go-libvirt-plain/internal/lvgen/lvlexer.go
Geoff Hickey deb7a54ff8 Generate libvirt procedure wrappers.
The generated wrappers have an argument for every field in their "Args"
struct, and return everything in their "Ret" struct (these structs are
defined in the protocol file, and identified by procedure name).
Marshaling and unmarshaling is handled inside the generated procedures.
2017-11-13 15:18:18 -05:00

311 lines
7.7 KiB
Go

// Copyright 2017 The go-libvirt Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package lvgen
import (
"fmt"
"io"
"io/ioutil"
"strings"
"unicode"
"unicode/utf8"
)
// eof is returned by the lexer when there's no more input.
const eof = -1
// oneRuneTokens lists the runes the lexer will consider to be tokens when it
// finds them. These are returned to the parser using the integer value of their
// runes.
var oneRuneTokens = `{}[]<>(),=;:*`
type item struct {
typ int
val string
line, column int
}
// String will display lexer items for humans to debug. There are some
// calculations here due to the way goyacc arranges token values; see the
// generated file y.go for an idea what's going on here, but the basic idea is
// that the lower token type values are reserved for single-rune tokens, which
// the lexer reports using the value of the rune itself. Everything else is
// allocated a range of type value up above all the possible single-rune values.
func (i item) String() string {
tokType := i.typ
if tokType >= yyPrivate {
if tokType < yyPrivate+len(yyTok2) {
tokType = yyTok2[tokType-yyPrivate]
}
}
rv := fmt.Sprintf("%s %q %d:%d", yyTokname(tokType), i.val, i.line, i.column)
return rv
}
// Lexer stores the state of this lexer.
type Lexer struct {
input string // the string we're scanning.
start int // start position of the item.
pos int // current position in the input.
line int // the current line (for error reporting).
column int // current position within the current line.
width int // width of the last rune scanned.
items chan item // channel of scanned lexer items (lexemes).
lastItem item // The last item the lexer handed the parser
}
// NewLexer will return a new lexer for the passed-in reader.
func NewLexer(rdr io.Reader) (*Lexer, error) {
l := &Lexer{}
b, err := ioutil.ReadAll(rdr)
if err != nil {
return nil, err
}
l.input = string(b)
l.items = make(chan item)
return l, nil
}
// Run starts the lexer, and should be called in a goroutine.
func (l *Lexer) Run() {
for state := lexText; state != nil; {
state = state(l)
}
close(l.items)
}
// emit returns a token to the parser.
func (l *Lexer) emit(t int) {
l.items <- item{t, l.input[l.start:l.pos], l.line, l.column}
l.start = l.pos
}
// Lex gets the next token.
func (l *Lexer) Lex(st *yySymType) int {
s := <-l.items
l.lastItem = s
st.val = s.val
// fmt.Println("Lex returning", s)
return int(s.typ)
}
// Error is called by the parser when it finds a problem.
func (l *Lexer) Error(s string) {
fmt.Printf("parse error at %d:%d: %v\n", l.lastItem.line+1, l.lastItem.column+1, s)
fmt.Printf("error at %q\n", l.lastItem.val)
}
// errorf is used by the lexer to report errors. It inserts an ERROR token into
// the items channel, and sets the state to nil, which stops the lexer's state
// machine.
func (l *Lexer) errorf(format string, args ...interface{}) stateFn {
l.items <- item{ERROR, fmt.Sprintf(format, args), l.line, l.column}
return nil
}
// next returns the rune at the current location, and advances to the next rune
// in the input.
func (l *Lexer) next() (r rune) {
if l.pos >= len(l.input) {
l.width = 0
return eof
}
r, l.width = utf8.DecodeRuneInString(l.input[l.pos:])
l.pos += l.width
l.column++
if r == '\n' {
l.line++
l.column = 0
}
return r
}
// ignore discards the current text from start to pos.
func (l *Lexer) ignore() {
l.start = l.pos
}
// backup moves back one character, but can only be called once per next() call.
func (l *Lexer) backup() {
l.pos -= l.width
if l.column > 0 {
l.column--
} else {
l.line--
}
l.width = 0
}
// peek looks ahead at the next rune in the stream without consuming it.
func (l *Lexer) peek() rune {
r := l.next()
l.backup()
return r
}
// accept will advance to the next rune if it's contained in the string of valid
// runes passed in by the caller.
func (l *Lexer) accept(valid string) bool {
if strings.IndexRune(valid, l.next()) >= 0 {
return true
}
l.backup()
return false
}
// acceptRun advances over a number of valid runes, stopping as soon as it hits
// one not on the list.
func (l *Lexer) acceptRun(valid string) {
for strings.IndexRune(valid, l.next()) >= 0 {
}
l.backup()
}
// keyword checks whether the current lexeme is a keyword or not. If so it
// returns the keyword's token id, otherwise it returns IDENTIFIER.
func (l *Lexer) keyword() int {
ident := l.input[l.start:l.pos]
tok, ok := keywords[ident]
if ok == true {
return int(tok)
}
return IDENTIFIER
}
// oneRuneToken determines whether a rune is a token. If so it returns the token
// id and true, otherwise it returns false.
func (l *Lexer) oneRuneToken(r rune) (int, bool) {
if strings.IndexRune(oneRuneTokens, r) >= 0 {
return int(r), true
}
return 0, false
}
// State functions
type stateFn func(*Lexer) stateFn
// lexText is the master lex routine. The lexer is started in this state.
func lexText(l *Lexer) stateFn {
for {
if strings.HasPrefix(l.input[l.pos:], "/*") {
return lexBlockComment
}
r := l.next()
if r == eof {
break
}
if unicode.IsSpace(r) {
l.ignore()
return lexText
}
if l.column == 1 && r == '%' {
l.backup()
return lexDirective
}
if unicode.IsLetter(r) {
l.backup()
return lexIdent
}
if unicode.IsNumber(r) || r == '-' {
l.backup()
return lexNumber
}
if t, isToken := l.oneRuneToken(r); isToken == true {
l.emit(t)
}
}
return nil
}
// lexBlockComment is used when we find a comment marker '/*' in the input.
func lexBlockComment(l *Lexer) stateFn {
for {
if strings.HasPrefix(l.input[l.pos:], "*/") {
// Found the end. Advance past the '*/' and discard the comment body.
l.next()
l.next()
l.ignore()
return lexText
}
if l.next() == eof {
return l.errorf("unterminated block comment")
}
}
}
// lexIdent handles identifiers.
func lexIdent(l *Lexer) stateFn {
for {
r := l.next()
if unicode.IsLetter(r) || unicode.IsDigit(r) || r == '_' {
continue
}
l.backup()
break
}
// We may have a keyword, so check for that before emitting.
l.emit(l.keyword())
return lexText
}
// lexNumber handles decimal and hexadecimal numbers. Decimal numbers may begin
// with a '-'; hex numbers begin with '0x' and do not accept leading '-'.
func lexNumber(l *Lexer) stateFn {
// Leading '-' is ok
digits := "0123456789"
neg := l.accept("-")
if !neg {
// allow '0x' for hex numbers, as long as there's not a leading '-'.
r := l.peek()
if r == '0' {
l.next()
if l.accept("x") {
digits = "0123456789ABCDEFabcdef"
}
}
}
// followed by any number of digits
l.acceptRun(digits)
r := l.peek()
if unicode.IsLetter(r) {
l.next()
return l.errorf("invalid number: %q", l.input[l.start:l.pos])
}
l.emit(CONSTANT)
return lexText
}
// lexDirective handles lines beginning with '%'. These are used to emit C code
// directly to the output file. For now we're ignoring them, but some of the
// constants in the protocol file do depend on values from #included header
// files, so that may need to change.
func lexDirective(l *Lexer) stateFn {
for {
r := l.next()
if r == '\n' {
l.ignore()
return lexText
}
if r == eof {
return l.errorf("unterminated directive")
}
}
}