package network import ( "container/list" "sync" "time" "github.com/golang/protobuf/proto" "github.com/micro/go-micro/client" rtr "github.com/micro/go-micro/client/selector/router" pbNet "github.com/micro/go-micro/network/proto" "github.com/micro/go-micro/proxy" "github.com/micro/go-micro/router" pbRtr "github.com/micro/go-micro/router/proto" "github.com/micro/go-micro/server" "github.com/micro/go-micro/transport" "github.com/micro/go-micro/tunnel" tun "github.com/micro/go-micro/tunnel/transport" "github.com/micro/go-micro/util/log" ) var ( // NetworkChannel is the name of the tunnel channel for passing network messages NetworkChannel = "network" // ControlChannel is the name of the tunnel channel for passing control message ControlChannel = "control" // DefaultLink is default network link DefaultLink = "network" ) // node is network node type node struct { sync.RWMutex // id is node id id string // address is node address address string // neighbours maps the node neighbourhood neighbours map[string]*node // network returns the node network network Network // lastSeen stores the time the node has been seen last time lastSeen time.Time } // Id is node ide func (n *node) Id() string { return n.id } // Address returns node address func (n *node) Address() string { return n.address } // Network returns node network func (n *node) Network() Network { return n.network } // Neighbourhood returns node neighbourhood func (n *node) Neighbourhood() []Node { var nodes []Node n.RLock() for _, neighbourNode := range n.neighbours { // make a copy of the node n := &node{ id: neighbourNode.id, address: neighbourNode.address, network: neighbourNode.network, } // NOTE: we do not care about neighbour's neighbours nodes = append(nodes, n) } n.RUnlock() return nodes } // network implements Network interface type network struct { // node is network node *node // options configure the network options Options // rtr is network router router.Router // prx is network proxy proxy.Proxy // tun is network tunnel tunnel.Tunnel // server is network server server server.Server // client is network client client client.Client // tunClient is a map of tunnel clients keyed over tunnel channel names tunClient map[string]transport.Client sync.RWMutex // connected marks the network as connected connected bool // closed closes the network closed chan bool } // newNetwork returns a new network node func newNetwork(opts ...Option) Network { options := DefaultOptions() for _, o := range opts { o(&options) } // init tunnel address to the network bind address options.Tunnel.Init( tunnel.Address(options.Address), tunnel.Nodes(options.Nodes...), ) // init router Id to the network id options.Router.Init( router.Id(options.Id), ) // create tunnel client with tunnel transport tunTransport := tun.NewTransport( tun.WithTunnel(options.Tunnel), ) // server is network server server := server.NewServer( server.Id(options.Id), server.Address(options.Address), server.Name(options.Name), server.Transport(tunTransport), ) // client is network client client := client.NewClient( client.Transport(tunTransport), client.Selector( rtr.NewSelector( rtr.WithRouter(options.Router), ), ), ) network := &network{ node: &node{ id: options.Id, address: options.Address, neighbours: make(map[string]*node), }, options: options, Router: options.Router, Proxy: options.Proxy, Tunnel: options.Tunnel, server: server, client: client, tunClient: make(map[string]transport.Client), } network.node.network = network return network } // Options returns network options func (n *network) Options() Options { n.Lock() options := n.options n.Unlock() return options } // Name returns network name func (n *network) Name() string { return n.options.Name } // Address returns network bind address func (n *network) Address() string { return n.Tunnel.Address() } // resolveNodes resolves network nodes to addresses func (n *network) resolveNodes() ([]string, error) { // resolve the network address to network nodes records, err := n.options.Resolver.Resolve(n.options.Name) if err != nil { return nil, err } nodeMap := make(map[string]bool) // collect network node addresses var nodes []string for _, record := range records { nodes = append(nodes, record.Address) nodeMap[record.Address] = true } // append seed nodes if we have them for _, node := range n.options.Nodes { if _, ok := nodeMap[node]; !ok { nodes = append(nodes, node) } } return nodes, nil } // resolve continuously resolves network nodes and initializes network tunnel with resolved addresses func (n *network) resolve() { resolve := time.NewTicker(ResolveTime) defer resolve.Stop() for { select { case <-n.closed: return case <-resolve.C: nodes, err := n.resolveNodes() if err != nil { log.Debugf("Network failed to resolve nodes: %v", err) continue } // initialize the tunnel n.Tunnel.Init( tunnel.Nodes(nodes...), ) } } } // handleNetConn handles network announcement messages func (n *network) handleNetConn(sess tunnel.Session, msg chan *transport.Message) { for { m := new(transport.Message) if err := sess.Recv(m); err != nil { // TODO: should we bail here? log.Debugf("Network tunnel [%s] receive error: %v", NetworkChannel, err) return } select { case msg <- m: case <-n.closed: return } } } // acceptNetConn accepts connections from NetworkChannel func (n *network) acceptNetConn(l tunnel.Listener, recv chan *transport.Message) { for { // accept a connection conn, err := l.Accept() if err != nil { // TODO: handle this log.Debugf("Network tunnel [%s] accept error: %v", NetworkChannel, err) return } select { case <-n.closed: return default: // go handle NetworkChannel connection go n.handleNetConn(conn, recv) } } } // processNetChan processes messages received on NetworkChannel func (n *network) processNetChan(l tunnel.Listener) { // receive network message queue recv := make(chan *transport.Message, 128) // accept NetworkChannel connections go n.acceptNetConn(l, recv) for { select { case m := <-recv: // switch on type of message and take action switch m.Header["Micro-Method"] { case "connect": // mark the time the message has been received now := time.Now() pbNetConnect := &pbNet.Connect{} if err := proto.Unmarshal(m.Body, pbNetConnect); err != nil { log.Debugf("Network tunnel [%s] connect unmarshal error: %v", NetworkChannel, err) continue } // don't process your own messages if pbNetConnect.Node.Id == n.options.Id { continue } n.Lock() log.Debugf("Network received connect message from: %s", pbNetConnect.Node.Id) // if the entry already exists skip adding it if neighbour, ok := n.neighbours[pbNetConnect.Node.Id]; ok { // update lastSeen timestamp if n.neighbours[pbNetConnect.Node.Id].lastSeen.Before(now) { neighbour.lastSeen = now } n.Unlock() continue } // add a new neighbour // NOTE: new node does not have any neighbours n.neighbours[pbNetConnect.Node.Id] = &node{ id: pbNetConnect.Node.Id, address: pbNetConnect.Node.Address, neighbours: make(map[string]*node), lastSeen: now, } n.Unlock() case "neighbour": // mark the time the message has been received now := time.Now() pbNetNeighbour := &pbNet.Neighbour{} if err := proto.Unmarshal(m.Body, pbNetNeighbour); err != nil { log.Debugf("Network tunnel [%s] neighbour unmarshal error: %v", NetworkChannel, err) continue } // don't process your own messages if pbNetNeighbour.Node.Id == n.options.Id { continue } n.Lock() log.Debugf("Network received neighbour message from: %s", pbNetNeighbour.Node.Id) // only add the neighbour if it is NOT already in node's list of neighbours if _, ok := n.neighbours[pbNetNeighbour.Node.Id]; !ok { n.neighbours[pbNetNeighbour.Node.Id] = &node{ id: pbNetNeighbour.Node.Id, address: pbNetNeighbour.Node.Address, neighbours: make(map[string]*node), lastSeen: now, } } // update lastSeen timestamp if n.neighbours[pbNetNeighbour.Node.Id].lastSeen.Before(now) { n.neighbours[pbNetNeighbour.Node.Id].lastSeen = now } // update/store the neighbour node neighbours // NOTE: * we dont update lastSeen time for the neighbours of the neighbour // * even though we are NOT interested in neighbours of neighbours here // we still allocate the map of neighbours for each of them for _, pbNeighbour := range pbNetNeighbour.Neighbours { neighbourNode := &node{ id: pbNeighbour.Id, address: pbNeighbour.Address, neighbours: make(map[string]*node), } n.neighbours[pbNetNeighbour.Node.Id].neighbours[neighbourNode.id] = neighbourNode } n.Unlock() case "close": pbNetClose := &pbNet.Close{} if err := proto.Unmarshal(m.Body, pbNetClose); err != nil { log.Debugf("Network tunnel [%s] close unmarshal error: %v", NetworkChannel, err) continue } // don't process your own messages if pbNetClose.Node.Id == n.options.Id { continue } n.Lock() log.Debugf("Network received close message from: %s", pbNetClose.Node.Id) if err := n.pruneNode(pbNetClose.Node.Id); err != nil { log.Debugf("Network failed to prune the node %s: %v", pbNetClose.Node.Id, err) continue } n.Unlock() } case <-n.closed: return } } } // announce announces node neighbourhood to the network func (n *network) announce(client transport.Client) { announce := time.NewTicker(AnnounceTime) defer announce.Stop() for { select { case <-n.closed: return case <-announce.C: n.RLock() nodes := make([]*pbNet.Node, len(n.neighbours)) i := 0 for id, _ := range n.neighbours { nodes[i] = &pbNet.Node{ Id: id, Address: n.neighbours[id].address, } i++ } n.RUnlock() node := &pbNet.Node{ Id: n.options.Id, Address: n.options.Address, } pbNetNeighbour := &pbNet.Neighbour{ Node: node, Neighbours: nodes, } body, err := proto.Marshal(pbNetNeighbour) if err != nil { // TODO: should we bail here? log.Debugf("Network failed to marshal neighbour message: %v", err) continue } // create transport message and chuck it down the pipe m := transport.Message{ Header: map[string]string{ "Micro-Method": "neighbour", }, Body: body, } log.Debugf("Network sending neighbour message from: %s", node.Id) if err := client.Send(&m); err != nil { log.Debugf("Network failed to send neighbour messsage: %v", err) continue } } } } // pruneNode removes a node with given id from the list of neighbours. It also removes all routes originted by this node. // NOTE: this method is not thread-safe; when calling it make sure you lock the particular code segment func (n *network) pruneNode(id string) error { delete(n.neighbours, id) // lookup all the routes originated at this node q := router.NewQuery( router.QueryRouter(id), ) routes, err := n.Router.Table().Query(q) if err != nil && err != router.ErrRouteNotFound { return err } // delete the found routes log.Logf("Network deleting routes originated by router: %s", id) for _, route := range routes { if err := n.Router.Table().Delete(route); err != nil && err != router.ErrRouteNotFound { return err } } return nil } // prune the nodes that have not been seen for certain period of time defined by PruneTime // Additionally, prune also removes all the routes originated by these nodes func (n *network) prune() { prune := time.NewTicker(PruneTime) defer prune.Stop() for { select { case <-n.closed: return case <-prune.C: n.Lock() for id, node := range n.neighbours { if id == n.options.Id { continue } if time.Since(node.lastSeen) > PruneTime { log.Debugf("Network deleting node %s: reached prune time threshold", id) if err := n.pruneNode(id); err != nil { log.Debugf("Network failed to prune the node %s: %v", id, err) continue } } } n.Unlock() } } } // handleCtrlConn handles ControlChannel connections func (n *network) handleCtrlConn(sess tunnel.Session, msg chan *transport.Message) { for { m := new(transport.Message) if err := sess.Recv(m); err != nil { // TODO: should we bail here? log.Debugf("Network tunnel advert receive error: %v", err) return } select { case msg <- m: case <-n.closed: return } } } // acceptCtrlConn accepts connections from ControlChannel func (n *network) acceptCtrlConn(l tunnel.Listener, recv chan *transport.Message) { for { // accept a connection conn, err := l.Accept() if err != nil { // TODO: handle this log.Debugf("Network tunnel [%s] accept error: %v", ControlChannel, err) return } select { case <-n.closed: return default: // go handle ControlChannel connection go n.handleCtrlConn(conn, recv) } } } // setRouteMetric calculates metric of the route and updates it in place // - Local route metric is 1 // - Routes with ID of adjacent neighbour are 10 // - Routes of neighbours of the advertiser are 100 // - Routes beyond your neighbourhood are 1000 func (n *network) setRouteMetric(route *router.Route) { // we are the origin of the route if route.Router == n.options.Id { route.Metric = 1 return } n.RLock() // check if the route origin is our neighbour if _, ok := n.neighbours[route.Router]; ok { route.Metric = 10 n.RUnlock() return } // check if the route origin is the neighbour of our neighbour for _, node := range n.neighbours { for id, _ := range node.neighbours { if route.Router == id { route.Metric = 100 n.RUnlock() return } } } n.RUnlock() // the origin of the route is beyond our neighbourhood route.Metric = 1000 } // processCtrlChan processes messages received on ControlChannel func (n *network) processCtrlChan(l tunnel.Listener) { // receive control message queue recv := make(chan *transport.Message, 128) // accept ControlChannel cconnections go n.acceptCtrlConn(l, recv) for { select { case m := <-recv: // switch on type of message and take action switch m.Header["Micro-Method"] { case "advert": now := time.Now() pbRtrAdvert := &pbRtr.Advert{} if err := proto.Unmarshal(m.Body, pbRtrAdvert); err != nil { log.Debugf("Network fail to unmarshal advert message: %v", err) continue } // don't process your own messages if pbRtrAdvert.Id == n.options.Id { continue } // loookup advertising node in our neighbourhood n.RLock() log.Debugf("Network received advert message from: %s", pbRtrAdvert.Id) advertNode, ok := n.neighbours[pbRtrAdvert.Id] if !ok { // advertising node has not been registered as our neighbour, yet // let's add it to the map of our neighbours advertNode = &node{ id: pbRtrAdvert.Id, neighbours: make(map[string]*node), lastSeen: now, } n.neighbours[pbRtrAdvert.Id] = advertNode } n.RUnlock() var events []*router.Event for _, event := range pbRtrAdvert.Events { // set the address of the advertising node // we know Route.Gateway is the address of advertNode // NOTE: this is true only when advertNode had not been registered // as our neighbour when we received the advert from it if advertNode.address == "" { advertNode.address = event.Route.Gateway } // if advertising node id is not the same as Route.Router // we know the advertising node is not the origin of the route if advertNode.id != event.Route.Router { // if the origin router is not in the advertising node neighbourhood // we can't rule out potential routing loops so we bail here if _, ok := advertNode.neighbours[event.Route.Router]; !ok { continue } } route := router.Route{ Service: event.Route.Service, Address: event.Route.Address, Gateway: event.Route.Gateway, Network: event.Route.Network, Router: event.Route.Router, Link: event.Route.Link, Metric: int(event.Route.Metric), } // set the route metric n.setRouteMetric(&route) // throw away metric bigger than 1000 if route.Metric > 1000 { continue } // create router event e := &router.Event{ Type: router.EventType(event.Type), Timestamp: time.Unix(0, pbRtrAdvert.Timestamp), Route: route, } events = append(events, e) } advert := &router.Advert{ Id: pbRtrAdvert.Id, Type: router.AdvertType(pbRtrAdvert.Type), Timestamp: time.Unix(0, pbRtrAdvert.Timestamp), TTL: time.Duration(pbRtrAdvert.Ttl), Events: events, } if err := n.Router.Process(advert); err != nil { log.Debugf("Network failed to process advert %s: %v", advert.Id, err) continue } } case <-n.closed: return } } } // advertise advertises routes to the network func (n *network) advertise(client transport.Client, advertChan <-chan *router.Advert) { for { select { // process local adverts and randomly fire them at other nodes case advert := <-advertChan: // create a proto advert var events []*pbRtr.Event for _, event := range advert.Events { // NOTE: we override the Gateway and Link fields here route := &pbRtr.Route{ Service: event.Route.Service, Address: event.Route.Address, Gateway: n.options.Address, Network: event.Route.Network, Router: event.Route.Router, Link: DefaultLink, Metric: int64(event.Route.Metric), } e := &pbRtr.Event{ Type: pbRtr.EventType(event.Type), Timestamp: event.Timestamp.UnixNano(), Route: route, } events = append(events, e) } pbRtrAdvert := &pbRtr.Advert{ Id: advert.Id, Type: pbRtr.AdvertType(advert.Type), Timestamp: advert.Timestamp.UnixNano(), Events: events, } body, err := proto.Marshal(pbRtrAdvert) if err != nil { // TODO: should we bail here? log.Debugf("Network failed to marshal advert message: %v", err) continue } // create transport message and chuck it down the pipe m := transport.Message{ Header: map[string]string{ "Micro-Method": "advert", }, Body: body, } log.Debugf("Network sending advert message from: %s", pbRtrAdvert.Id) if err := client.Send(&m); err != nil { log.Debugf("Network failed to send advert %s: %v", pbRtrAdvert.Id, err) continue } case <-n.closed: return } } } // Connect connects the network func (n *network) Connect() error { n.Lock() defer n.Unlock() // return if already connected if n.connected { return nil } // try to resolve network nodes nodes, err := n.resolveNodes() if err != nil { log.Debugf("Network failed to resolve nodes: %v", err) } // connect network tunnel if err := n.Tunnel.Connect(); err != nil { return err } // initialize the tunnel to resolved nodes n.Tunnel.Init( tunnel.Nodes(nodes...), ) // dial into ControlChannel to send route adverts ctrlClient, err := n.Tunnel.Dial(ControlChannel, tunnel.DialMulticast()) if err != nil { return err } n.tunClient[ControlChannel] = ctrlClient // listen on ControlChannel ctrlListener, err := n.Tunnel.Listen(ControlChannel) if err != nil { return err } // dial into NetworkChannel to send network messages netClient, err := n.Tunnel.Dial(NetworkChannel, tunnel.DialMulticast()) if err != nil { return err } n.tunClient[NetworkChannel] = netClient // listen on NetworkChannel netListener, err := n.Tunnel.Listen(NetworkChannel) if err != nil { return err } // create closed channel n.closed = make(chan bool) // start the router if err := n.options.Router.Start(); err != nil { return err } // start advertising routes advertChan, err := n.options.Router.Advertise() if err != nil { return err } // start the server if err := n.server.Start(); err != nil { return err } // send connect message to NetworkChannel // NOTE: in theory we could do this as soon as // Dial to NetworkChannel succeeds, but instead // we initialize all other node resources first node := &pbNet.Node{ Id: n.options.Id, Address: n.options.Address, } pbNetConnect := &pbNet.Connect{ Node: node, } // only proceed with sending to NetworkChannel if marshal succeeds if body, err := proto.Marshal(pbNetConnect); err == nil { m := transport.Message{ Header: map[string]string{ "Micro-Method": "connect", }, Body: body, } log.Debugf("Network sending connect message: %s", node.Id) if err := netClient.Send(&m); err != nil { log.Debugf("Network failed to send connect messsage: %v", err) } } // go resolving network nodes go n.resolve() // broadcast neighbourhood go n.announce(netClient) // prune stale nodes go n.prune() // listen to network messages go n.processNetChan(netListener) // advertise service routes go n.advertise(ctrlClient, advertChan) // accept and process routes go n.processCtrlChan(ctrlListener) // set connected to true n.connected = true return nil } // Nodes returns a list of all network nodes func (n *network) Nodes() []Node { //track the visited nodes visited := make(map[string]*node) // queue of the nodes to visit queue := list.New() // we need to freeze the network graph here // otherwise we might get invalid results n.RLock() defer n.RUnlock() // push network node to the back of queue queue.PushBack(n.node) // mark the node as visited visited[n.node.id] = n.node // keep iterating over the queue until its empty for qnode := queue.Front(); qnode != nil; qnode = qnode.Next() { queue.Remove(qnode) // iterate through all of its neighbours // mark the visited nodes; enqueue the non-visted for id, node := range qnode.Value.(*node).neighbours { if _, ok := visited[id]; !ok { visited[id] = node queue.PushBack(node) } } } var nodes []Node // collect all the nodes and return them for _, node := range visited { nodes = append(nodes, node) } return nodes } func (n *network) close() error { // stop the server if err := n.server.Stop(); err != nil { return err } // stop the router if err := n.Router.Stop(); err != nil { return err } // close the tunnel if err := n.Tunnel.Close(); err != nil { return err } return nil } // Close closes network connection func (n *network) Close() error { n.Lock() defer n.Unlock() if !n.connected { return nil } select { case <-n.closed: return nil default: // send close message only if we managed to connect to NetworkChannel if netClient, ok := n.tunClient[NetworkChannel]; ok { // send connect message to NetworkChannel node := &pbNet.Node{ Id: n.options.Id, Address: n.options.Address, } pbNetClose := &pbNet.Close{ Node: node, } // only proceed with sending to NetworkChannel if marshal succeeds if body, err := proto.Marshal(pbNetClose); err == nil { // create transport message and chuck it down the pipe m := transport.Message{ Header: map[string]string{ "Micro-Method": "close", }, Body: body, } log.Debugf("Network sending close message from: %s", node.Id) if err := netClient.Send(&m); err != nil { log.Debugf("Network failed to send close messsage: %v", err) } } } // TODO: send close message to the network channel close(n.closed) // set connected to false n.connected = false } return n.close() } // Client returns network client func (n *network) Client() client.Client { return n.client } // Server returns network server func (n *network) Server() server.Server { return n.server }