package tunnel import ( "io" "sync" "time" "github.com/google/uuid" "github.com/micro/go-micro/transport" ) type link struct { transport.Socket sync.RWMutex // stops the link closed chan bool // send queue sendQueue chan *packet // receive queue recvQueue chan *packet // unique id of this link e.g uuid // which we define for ourselves id string // whether its a loopback connection // this flag is used by the transport listener // which accepts inbound quic connections loopback bool // whether its actually connected // dialled side sets it to connected // after sending the message. the // listener waits for the connect connected bool // the last time we received a keepalive // on this link from the remote side lastKeepAlive time.Time // channels keeps a mapping of channels and last seen channels map[string]time.Time // the weighted moving average roundtrip length int64 // weighted moving average of bits flowing rate float64 // keep an error count on the link errCount int } // packet send over link type packet struct { // message to send or received message *transport.Message // status returned when sent status chan error // receive related error err error } func newLink(s transport.Socket) *link { l := &link{ Socket: s, id: uuid.New().String(), lastKeepAlive: time.Now(), closed: make(chan bool), channels: make(map[string]time.Time), sendQueue: make(chan *packet, 128), recvQueue: make(chan *packet, 128), } go l.process() go l.expiry() return l } func (l *link) setRTT(d time.Duration) { l.Lock() defer l.Unlock() if l.length <= 0 { l.length = d.Nanoseconds() return } // https://fishi.devtail.io/weblog/2015/04/12/measuring-bandwidth-and-round-trip-time-tcp-connection-inside-application-layer/ length := 0.8*float64(l.length) + 0.2*float64(d.Nanoseconds()) // set new length l.length = int64(length) } // process deals with the send queue func (l *link) process() { // receive messages go func() { for { m := new(transport.Message) err := l.recv(m) if err != nil { l.Lock() l.errCount++ l.Unlock() } // process new received message select { case l.recvQueue <- &packet{message: m, err: err}: case <-l.closed: return } } }() // send messages for { select { case pk := <-l.sendQueue: // send the message pk.status <- l.send(pk.message) case <-l.closed: return } } } // watches the channel expiry func (l *link) expiry() { t := time.NewTicker(time.Minute) defer t.Stop() for { select { case <-l.closed: return case <-t.C: // drop any channel mappings older than 2 minutes var kill []string killTime := time.Minute * 2 l.RLock() for ch, t := range l.channels { if d := time.Since(t); d > killTime { kill = append(kill, ch) } } l.RUnlock() // if nothing to kill don't bother with a wasted lock if len(kill) == 0 { continue } // kill the channels! l.Lock() for _, ch := range kill { delete(l.channels, ch) } l.Unlock() } } } func (l *link) send(m *transport.Message) error { if m.Header == nil { m.Header = make(map[string]string) } // send the message return l.Socket.Send(m) } // recv a message on the link func (l *link) recv(m *transport.Message) error { if m.Header == nil { m.Header = make(map[string]string) } // receive the transport message return l.Socket.Recv(m) } // Delay is the current load on the link func (l *link) Delay() int64 { return int64(len(l.sendQueue) + len(l.recvQueue)) } // Current transfer rate as bits per second (lower is better) func (l *link) Rate() float64 { l.RLock() defer l.RUnlock() return l.rate } // Length returns the roundtrip time as nanoseconds (lower is better). // Returns 0 where no measurement has been taken. func (l *link) Length() int64 { l.RLock() defer l.RUnlock() return l.length } func (l *link) Id() string { l.RLock() defer l.RUnlock() return l.id } func (l *link) Close() error { select { case <-l.closed: return nil default: l.Socket.Close() close(l.closed) } return nil } // Send sencs a message on the link func (l *link) Send(m *transport.Message) error { // create a new packet to send over the link p := &packet{ message: m, status: make(chan error, 1), } // get time now now := time.Now() // check if its closed first select { case <-l.closed: return io.EOF default: } // queue the message select { case l.sendQueue <- p: // in the send queue case <-l.closed: return io.EOF } // error to use var err error // wait for response select { case <-l.closed: return io.EOF case err = <-p.status: } l.Lock() defer l.Unlock() // there's an error increment the counter and bail if err != nil { l.errCount++ return err } // reset the counter l.errCount = 0 // calculate the data sent dataSent := len(m.Body) // set header length for k, v := range m.Header { dataSent += (len(k) + len(v)) } // calculate based on data if dataSent > 0 { // measure time taken delta := time.Since(now) // bit sent bits := dataSent * 1024 // rate of send in bits per nanosecond rate := float64(bits) / float64(delta.Nanoseconds()) // default the rate if its zero if l.rate == 0 { // rate per second l.rate = rate * 1e9 } else { // set new rate per second l.rate = 0.8*l.rate + 0.2*(rate*1e9) } } return nil } // Accept accepts a message on the socket func (l *link) Recv(m *transport.Message) error { select { case <-l.closed: // check if there's any messages left select { case pk := <-l.recvQueue: // check the packet receive error if pk.err != nil { return pk.err } *m = *pk.message default: return io.EOF } case pk := <-l.recvQueue: // check the packet receive error if pk.err != nil { return pk.err } *m = *pk.message } return nil } // Status can return connected, closed, error func (l *link) Status() string { select { case <-l.closed: return "closed" default: l.RLock() defer l.RUnlock() if l.errCount > 3 { return "error" } return "connected" } }