package network import ( "errors" "fmt" "hash/fnv" "io" "math" "math/rand" "sort" "sync" "time" "github.com/golang/protobuf/proto" "github.com/micro/go-micro/client" rtr "github.com/micro/go-micro/client/selector/router" "github.com/micro/go-micro/network/resolver/dns" pbNet "github.com/micro/go-micro/network/service/proto" "github.com/micro/go-micro/proxy" "github.com/micro/go-micro/router" pbRtr "github.com/micro/go-micro/router/service/proto" "github.com/micro/go-micro/server" "github.com/micro/go-micro/transport" "github.com/micro/go-micro/tunnel" bun "github.com/micro/go-micro/tunnel/broker" tun "github.com/micro/go-micro/tunnel/transport" "github.com/micro/go-micro/util/backoff" "github.com/micro/go-micro/util/log" pbUtil "github.com/micro/go-micro/util/proto" ) var ( // NetworkChannel is the name of the tunnel channel for passing network messages NetworkChannel = "network" // ControlChannel is the name of the tunnel channel for passing control message ControlChannel = "control" // DefaultLink is default network link DefaultLink = "network" // MaxConnections is the max number of network client connections MaxConnections = 3 // MaxPeerErrors is the max number of peer errors before we remove it from network graph MaxPeerErrors = 3 ) var ( // ErrClientNotFound is returned when client for tunnel channel could not be found ErrClientNotFound = errors.New("client not found") // ErrPeerLinkNotFound is returned when peer link could not be found in tunnel Links ErrPeerLinkNotFound = errors.New("peer link not found") // ErrPeerMaxExceeded is returned when peer has reached its max error count limit ErrPeerMaxExceeded = errors.New("peer max errors exceeded") ) // network implements Network interface type network struct { // node is network node *node // options configure the network options Options // rtr is network router router router.Router // proxy is network proxy proxy proxy.Proxy // tunnel is network tunnel tunnel tunnel.Tunnel // server is network server server server.Server // client is network client client client.Client // tunClient is a map of tunnel channel clients tunClient map[string]transport.Client // peerLinks is a map of links for each peer peerLinks map[string]tunnel.Link sync.RWMutex // connected marks the network as connected connected bool // closed closes the network closed chan bool // whether we've discovered by the network discovered chan bool // solicted checks whether routes were solicited by one node solicited chan *node } // message is network message type message struct { // msg is transport message msg *transport.Message // session is tunnel session session tunnel.Session } // newNetwork returns a new network node func newNetwork(opts ...Option) Network { // create default options options := DefaultOptions() // initialize network options for _, o := range opts { o(&options) } // set the address to a hashed address hasher := fnv.New64() hasher.Write([]byte(options.Address + options.Id)) address := fmt.Sprintf("%d", hasher.Sum64()) // set the address to advertise var advertise string var peerAddress string if len(options.Advertise) > 0 { advertise = options.Advertise peerAddress = options.Advertise } else { advertise = options.Address peerAddress = address } // init tunnel address to the network bind address options.Tunnel.Init( tunnel.Address(options.Address), ) // init router Id to the network id options.Router.Init( router.Id(options.Id), router.Address(peerAddress), ) // create tunnel client with tunnel transport tunTransport := tun.NewTransport( tun.WithTunnel(options.Tunnel), ) // create the tunnel broker tunBroker := bun.NewBroker( bun.WithTunnel(options.Tunnel), ) // server is network server server := server.NewServer( server.Id(options.Id), server.Address(peerAddress), server.Advertise(advertise), server.Name(options.Name), server.Transport(tunTransport), server.Broker(tunBroker), ) // client is network client client := client.NewClient( client.Broker(tunBroker), client.Transport(tunTransport), client.Selector( rtr.NewSelector( rtr.WithRouter(options.Router), ), ), ) network := &network{ node: &node{ id: options.Id, address: peerAddress, peers: make(map[string]*node), status: newStatus(), }, options: options, router: options.Router, proxy: options.Proxy, tunnel: options.Tunnel, server: server, client: client, tunClient: make(map[string]transport.Client), peerLinks: make(map[string]tunnel.Link), discovered: make(chan bool, 1), solicited: make(chan *node, 32), } network.node.network = network return network } func (n *network) Init(opts ...Option) error { n.Lock() defer n.Unlock() // TODO: maybe only allow reinit of certain opts for _, o := range opts { o(&n.options) } return nil } // Options returns network options func (n *network) Options() Options { n.RLock() defer n.RUnlock() options := n.options return options } // Name returns network name func (n *network) Name() string { n.RLock() defer n.RUnlock() name := n.options.Name return name } // acceptNetConn accepts connections from NetworkChannel func (n *network) acceptNetConn(l tunnel.Listener, recv chan *message) { var i int for { // accept a connection conn, err := l.Accept() if err != nil { sleep := backoff.Do(i) log.Debugf("Network tunnel [%s] accept error: %v, backing off for %v", ControlChannel, err, sleep) time.Sleep(sleep) if i > 5 { i = 0 } i++ continue } select { case <-n.closed: if err := conn.Close(); err != nil { log.Debugf("Network tunnel [%s] failed to close connection: %v", NetworkChannel, err) } return default: // go handle NetworkChannel connection go n.handleNetConn(conn, recv) } } } // acceptCtrlConn accepts connections from ControlChannel func (n *network) acceptCtrlConn(l tunnel.Listener, recv chan *message) { var i int for { // accept a connection conn, err := l.Accept() if err != nil { sleep := backoff.Do(i) log.Debugf("Network tunnel [%s] accept error: %v, backing off for %v", ControlChannel, err, sleep) time.Sleep(sleep) if i > 5 { // reset the counter i = 0 } i++ continue } select { case <-n.closed: if err := conn.Close(); err != nil { log.Debugf("Network tunnel [%s] failed to close connection: %v", ControlChannel, err) } return default: // go handle ControlChannel connection go n.handleCtrlConn(conn, recv) } } } // advertise advertises routes to the network func (n *network) advertise(advertChan <-chan *router.Advert) { rnd := rand.New(rand.NewSource(time.Now().UnixNano())) hasher := fnv.New64() for { select { // process local adverts and randomly fire them at other nodes case advert := <-advertChan: // create a proto advert var events []*pbRtr.Event for _, event := range advert.Events { // the routes service address address := event.Route.Address // only hash the address if we're advertising our own local routes if event.Route.Router == advert.Id { // hash the service before advertising it hasher.Reset() // routes for multiple instances of a service will be collapsed here. // TODO: once we store labels in the table this may need to change // to include the labels in case they differ but highly unlikely hasher.Write([]byte(event.Route.Service + n.node.Address())) address = fmt.Sprintf("%d", hasher.Sum64()) } // calculate route metric to advertise metric := n.getRouteMetric(event.Route.Router, event.Route.Gateway, event.Route.Link) // NOTE: we override Gateway, Link and Address here route := &pbRtr.Route{ Service: event.Route.Service, Address: address, Gateway: n.node.Address(), Network: event.Route.Network, Router: event.Route.Router, Link: DefaultLink, Metric: metric, } e := &pbRtr.Event{ Type: pbRtr.EventType(event.Type), Timestamp: event.Timestamp.UnixNano(), Route: route, } events = append(events, e) } msg := &pbRtr.Advert{ Id: advert.Id, Type: pbRtr.AdvertType(advert.Type), Timestamp: advert.Timestamp.UnixNano(), Events: events, } // send the advert to a select number of random peers if advert.Type != router.Solicitation { // get a list of node peers peers := n.Peers() // advertise to max 3 peers max := len(peers) if max > 3 { max = 3 } for i := 0; i < max; i++ { if peer := n.node.GetPeerNode(peers[rnd.Intn(len(peers))].Id()); peer != nil { if err := n.sendTo("advert", ControlChannel, peer, msg); err != nil { log.Debugf("Network failed to advertise routes to %s: %v", peer.Id(), err) } } } continue } // it's a solication, someone asked for it // so we're going to pick off the node and send it select { case peer := <-n.solicited: // someone requested the route n.sendTo("advert", ControlChannel, peer, msg) default: // get a list of node peers peers := n.Peers() // pick a random peer from the list of peers if peer := n.node.GetPeerNode(peers[rnd.Intn(len(peers))].Id()); peer != nil { if err := n.sendTo("advert", ControlChannel, peer, msg); err != nil { log.Debugf("Network failed to advertise routes to %s: %v, sending multicast", peer.Id(), err) // send a multicast message if we fail to send Unicast message if err := n.sendMsg("advert", ControlChannel, msg); err != nil { log.Debugf("Network failed to advertise routes to %s: %v", peer.Id(), err) } } } } case <-n.closed: return } } } // initNodes initializes tunnel with a list of resolved nodes func (n *network) initNodes(startup bool) { nodes, err := n.resolveNodes() // NOTE: this condition never fires // as resolveNodes() never returns error if err != nil && !startup { log.Debugf("Network failed to init nodes: %v", err) return } // initialize the tunnel log.Tracef("Network initialising nodes %+v\n", nodes) n.tunnel.Init( tunnel.Nodes(nodes...), ) } // resolveNodes resolves network nodes to addresses func (n *network) resolveNodes() ([]string, error) { // resolve the network address to network nodes records, err := n.options.Resolver.Resolve(n.options.Name) if err != nil { log.Debugf("Network failed to resolve nodes: %v", err) } // sort by lowest priority if err == nil { sort.Slice(records, func(i, j int) bool { return records[i].Priority < records[j].Priority }) } // keep processing nodeMap := make(map[string]bool) // collect network node addresses //nolint:prealloc var nodes []string var i int for _, record := range records { if _, ok := nodeMap[record.Address]; ok { continue } nodeMap[record.Address] = true nodes = append(nodes, record.Address) i++ // break once MaxConnection nodes has been reached if i == MaxConnections { break } } // use the DNS resolver to expand peers dns := &dns.Resolver{} // append seed nodes if we have them for _, node := range n.options.Nodes { // resolve anything that looks like a host name records, err := dns.Resolve(node) if err != nil { log.Debugf("Failed to resolve %v %v", node, err) continue } // add to the node map for _, record := range records { if _, ok := nodeMap[record.Address]; !ok { nodes = append(nodes, record.Address) } } } return nodes, nil } // handleNetConn handles network announcement messages func (n *network) handleNetConn(s tunnel.Session, msg chan *message) { for { m := new(transport.Message) if err := s.Recv(m); err != nil { log.Debugf("Network tunnel [%s] receive error: %v", NetworkChannel, err) switch err { case io.EOF, tunnel.ErrReadTimeout: s.Close() return } continue } // check if peer is set peer := m.Header["Micro-Peer"] // check who the message is intended for if len(peer) > 0 && peer != n.options.Id { continue } select { case msg <- &message{ msg: m, session: s, }: case <-n.closed: return } } } // handleCtrlConn handles ControlChannel connections func (n *network) handleCtrlConn(s tunnel.Session, msg chan *message) { for { m := new(transport.Message) if err := s.Recv(m); err != nil { log.Debugf("Network tunnel [%s] receive error: %v", ControlChannel, err) switch err { case io.EOF, tunnel.ErrReadTimeout: s.Close() return } continue } // check if peer is set peer := m.Header["Micro-Peer"] // check who the message is intended for if len(peer) > 0 && peer != n.options.Id { continue } select { case msg <- &message{ msg: m, session: s, }: case <-n.closed: return } } } // getHopCount queries network graph and returns hop count for given router // NOTE: this should be called getHopeMetric // - Routes for local services have hop count 1 // - Routes with ID of adjacent nodes have hop count 10 // - Routes by peers of the advertiser have hop count 100 // - Routes beyond node neighbourhood have hop count 1000 func (n *network) getHopCount(rtr string) int { // make sure node.peers are not modified n.node.RLock() defer n.node.RUnlock() // we are the origin of the route if rtr == n.options.Id { return 1 } // the route origin is our peer if _, ok := n.node.peers[rtr]; ok { return 10 } // the route origin is the peer of our peer for _, peer := range n.node.peers { for id := range peer.peers { if rtr == id { return 100 } } } // otherwise we are three hops away return 1000 } // getRouteMetric calculates router metric and returns it // Route metric is calculated based on link status and route hopd count func (n *network) getRouteMetric(router string, gateway string, link string) int64 { // set the route metric n.RLock() defer n.RUnlock() // local links are marked as 1 if link == "local" && gateway == "" { return 1 } // local links from other gateways as 2 if link == "local" && gateway != "" { return 2 } log.Tracef("Network looking up %s link to gateway: %s", link, gateway) // attempt to find link based on gateway address lnk, ok := n.peerLinks[gateway] if !ok { log.Debugf("Network failed to find a link to gateway: %s", gateway) // no link found so infinite metric returned return math.MaxInt64 } // calculating metric delay := lnk.Delay() hops := n.getHopCount(router) length := lnk.Length() // make sure delay is non-zero if delay == 0 { delay = 1 } // make sure length is non-zero if length == 0 { log.Debugf("Link length is 0 %v %v", link, lnk.Length()) length = 10e9 } log.Tracef("Network calculated metric %v delay %v length %v distance %v", (delay*length*int64(hops))/10e6, delay, length, hops) return (delay * length * int64(hops)) / 10e6 } // processCtrlChan processes messages received on ControlChannel func (n *network) processCtrlChan(listener tunnel.Listener) { defer listener.Close() // receive control message queue recv := make(chan *message, 128) // accept ControlChannel cconnections go n.acceptCtrlConn(listener, recv) for { select { case m := <-recv: // switch on type of message and take action switch m.msg.Header["Micro-Method"] { case "advert": pbRtrAdvert := &pbRtr.Advert{} if err := proto.Unmarshal(m.msg.Body, pbRtrAdvert); err != nil { log.Debugf("Network fail to unmarshal advert message: %v", err) continue } // don't process your own messages if pbRtrAdvert.Id == n.options.Id { continue } log.Debugf("Network received advert message from: %s", pbRtrAdvert.Id) // loookup advertising node in our peer topology advertNode := n.node.GetPeerNode(pbRtrAdvert.Id) if advertNode == nil { // if we can't find the node in our topology (MaxDepth) we skipp prcessing adverts log.Debugf("Network skipping advert message from unknown peer: %s", pbRtrAdvert.Id) continue } var events []*router.Event for _, event := range pbRtrAdvert.Events { // we know the advertising node is not the origin of the route if pbRtrAdvert.Id != event.Route.Router { // if the origin router is not the advertising node peer // we can't rule out potential routing loops so we bail here if peer := advertNode.GetPeerNode(event.Route.Router); peer == nil { log.Debugf("Network skipping advert message from peer: %s", pbRtrAdvert.Id) continue } } route := router.Route{ Service: event.Route.Service, Address: event.Route.Address, Gateway: event.Route.Gateway, Network: event.Route.Network, Router: event.Route.Router, Link: event.Route.Link, Metric: event.Route.Metric, } // calculate route metric and add to the advertised metric // we need to make sure we do not overflow math.MaxInt64 metric := n.getRouteMetric(event.Route.Router, event.Route.Gateway, event.Route.Link) log.Tracef("Network metric for router %s and gateway %s: %v", event.Route.Router, event.Route.Gateway, metric) // check we don't overflow max int 64 if d := route.Metric + metric; d <= 0 { // set to max int64 if we overflow route.Metric = math.MaxInt64 } else { // set the combined value of metrics otherwise route.Metric = d } // create router event e := &router.Event{ Type: router.EventType(event.Type), Timestamp: time.Unix(0, pbRtrAdvert.Timestamp), Route: route, } events = append(events, e) } // if no events are eligible for processing continue if len(events) == 0 { log.Tracef("Network no events to be processed by router: %s", n.options.Id) continue } // create an advert and process it advert := &router.Advert{ Id: pbRtrAdvert.Id, Type: router.AdvertType(pbRtrAdvert.Type), Timestamp: time.Unix(0, pbRtrAdvert.Timestamp), TTL: time.Duration(pbRtrAdvert.Ttl), Events: events, } log.Tracef("Network router %s processing advert: %s", n.Id(), advert.Id) if err := n.router.Process(advert); err != nil { log.Debugf("Network failed to process advert %s: %v", advert.Id, err) } case "solicit": pbRtrSolicit := new(pbRtr.Solicit) if err := proto.Unmarshal(m.msg.Body, pbRtrSolicit); err != nil { log.Debugf("Network fail to unmarshal solicit message: %v", err) continue } log.Debugf("Network received solicit message from: %s", pbRtrSolicit.Id) // ignore solicitation when requested by you if pbRtrSolicit.Id == n.options.Id { continue } log.Tracef("Network router flushing routes for: %s", pbRtrSolicit.Id) peer := &node{ id: pbRtrSolicit.Id, link: m.msg.Header["Micro-Link"], } // specify that someone solicited the route select { case n.solicited <- peer: default: // don't block } // advertise all the routes when a new node has connected if err := n.router.Solicit(); err != nil { log.Debugf("Network failed to solicit routes: %s", err) } } case <-n.closed: return } } } // processNetChan processes messages received on NetworkChannel func (n *network) processNetChan(listener tunnel.Listener) { defer listener.Close() // receive network message queue recv := make(chan *message, 128) // accept NetworkChannel connections go n.acceptNetConn(listener, recv) for { select { case m := <-recv: // switch on type of message and take action switch m.msg.Header["Micro-Method"] { case "connect": // mark the time the message has been received now := time.Now() pbNetConnect := &pbNet.Connect{} if err := proto.Unmarshal(m.msg.Body, pbNetConnect); err != nil { log.Debugf("Network tunnel [%s] connect unmarshal error: %v", NetworkChannel, err) continue } // don't process your own messages if pbNetConnect.Node.Id == n.options.Id { continue } log.Debugf("Network received connect message from: %s", pbNetConnect.Node.Id) peer := &node{ id: pbNetConnect.Node.Id, address: pbNetConnect.Node.Address, link: m.msg.Header["Micro-Link"], peers: make(map[string]*node), status: newStatus(), lastSeen: now, } // update peer links // TODO: should we do this only if we manage to add a peer // What should we do if the peer links failed to be updated? if err := n.updatePeerLinks(peer); err != nil { log.Debugf("Network failed updating peer links: %s", err) } // add peer to the list of node peers if err := n.AddPeer(peer); err == ErrPeerExists { log.Tracef("Network peer exists, refreshing: %s", peer.id) // update lastSeen time for the peer if err := n.RefreshPeer(peer.id, peer.link, now); err != nil { log.Debugf("Network failed refreshing peer %s: %v", peer.id, err) } } // we send the sync message because someone has sent connect // and wants to either connect or reconnect to the network // The faster it gets the network config (routes and peer graph) // the faster the network converges to a stable state go func() { // get node peer graph to send back to the connecting node node := PeersToProto(n.node, MaxDepth) msg := &pbNet.Sync{ Peer: node, } // get a list of all of our routes routes, err := n.options.Router.Table().List() switch err { case nil: // encode the routes to protobuf pbRoutes := make([]*pbRtr.Route, 0, len(routes)) for _, route := range routes { pbRoute := pbUtil.RouteToProto(route) pbRoutes = append(pbRoutes, pbRoute) } // pack the routes into the sync message msg.Routes = pbRoutes default: // we can't list the routes log.Debugf("Network node %s failed listing routes: %v", n.id, err) } // send sync message to the newly connected peer if err := n.sendTo("sync", NetworkChannel, peer, msg); err != nil { log.Debugf("Network failed to send sync message: %v", err) } // wait for a short period of time before sending a solicit message <-time.After(time.Millisecond * 100) // send a solicit message when discovering new peer // this triggers the node to flush its routing table to the network // and leads to faster convergence of the network solicit := &pbRtr.Solicit{ Id: n.options.Id, } // ask for the new nodes routes if err := n.sendTo("solicit", ControlChannel, peer, solicit); err != nil { log.Debugf("Network failed to send solicit message: %s", err) } // now advertise our own routes select { case n.solicited <- peer: default: // don't block } }() case "peer": // mark the time the message has been received now := time.Now() pbNetPeer := &pbNet.Peer{} if err := proto.Unmarshal(m.msg.Body, pbNetPeer); err != nil { log.Debugf("Network tunnel [%s] peer unmarshal error: %v", NetworkChannel, err) continue } // don't process your own messages if pbNetPeer.Node.Id == n.options.Id { continue } log.Debugf("Network received peer message from: %s %s", pbNetPeer.Node.Id, pbNetPeer.Node.Address) peer := &node{ id: pbNetPeer.Node.Id, address: pbNetPeer.Node.Address, link: m.msg.Header["Micro-Link"], peers: make(map[string]*node), status: newPeerStatus(pbNetPeer), lastSeen: now, } // update peer links // TODO: should we do this only if we manage to add a peer // What should we do if the peer links failed to be updated? if err := n.updatePeerLinks(peer); err != nil { log.Debugf("Network failed updating peer links: %s", err) } // if it's a new peer i.e. we do not have it in our graph, we solicit its routes if err := n.node.AddPeer(peer); err == nil { go func() { msg := PeersToProto(n.node, MaxDepth) // advertise yourself to the peer if err := n.sendTo("peer", NetworkChannel, peer, msg); err != nil { log.Debugf("Network failed to advertise peers: %v", err) } <-time.After(time.Millisecond * 100) // send a solicit message when discovering new peer solicit := &pbRtr.Solicit{ Id: n.options.Id, } // then solicit this peer if err := n.sendTo("solicit", ControlChannel, peer, solicit); err != nil { log.Debugf("Network failed to send solicit message: %s", err) } // now advertise our own routes select { case n.solicited <- peer: default: // don't block } // advertise all the routes when a new node has connected if err := n.router.Solicit(); err != nil { log.Debugf("Network failed to solicit routes: %s", err) } }() continue // if we already have the peer in our graph, skip further steps } else if err != ErrPeerExists { log.Debugf("Network got error adding peer %v", err) continue } log.Tracef("Network peer exists, refreshing: %s", pbNetPeer.Node.Id) // update lastSeen time for the peer if err := n.RefreshPeer(peer.id, peer.link, now); err != nil { log.Debugf("Network failed refreshing peer %s: %v", pbNetPeer.Node.Id, err) } // NOTE: we don't unpack MaxDepth toplogy peer = UnpackPeerTopology(pbNetPeer, now, MaxDepth-1) // update the link peer.link = m.msg.Header["Micro-Link"] log.Tracef("Network updating topology of node: %s", n.node.id) if err := n.node.UpdatePeer(peer); err != nil { log.Debugf("Network failed to update peers: %v", err) } // tell the connect loop that we've been discovered // so it stops sending connect messages out select { case n.discovered <- true: default: // don't block here } case "sync": // record the timestamp of the message receipt now := time.Now() pbNetSync := &pbNet.Sync{} if err := proto.Unmarshal(m.msg.Body, pbNetSync); err != nil { log.Debugf("Network tunnel [%s] sync unmarshal error: %v", NetworkChannel, err) continue } // don't process your own messages if pbNetSync.Peer.Node.Id == n.options.Id { continue } log.Debugf("Network received sync message from: %s", pbNetSync.Peer.Node.Id) peer := &node{ id: pbNetSync.Peer.Node.Id, address: pbNetSync.Peer.Node.Address, link: m.msg.Header["Micro-Link"], peers: make(map[string]*node), status: newPeerStatus(pbNetSync.Peer), lastSeen: now, } // update peer links // TODO: should we do this only if we manage to add a peer // What should we do if the peer links failed to be updated? if err := n.updatePeerLinks(peer); err != nil { log.Debugf("Network failed updating peer links: %s", err) } // add peer to the list of node peers if err := n.node.AddPeer(peer); err == ErrPeerExists { log.Tracef("Network peer exists, refreshing: %s", peer.id) // update lastSeen time for the existing node if err := n.RefreshPeer(peer.id, peer.link, now); err != nil { log.Debugf("Network failed refreshing peer %s: %v", peer.id, err) } } // when we receive a sync message we update our routing table // and send a peer message back to the network to announce our presence // add all the routes we have received in the sync message for _, pbRoute := range pbNetSync.Routes { route := pbUtil.ProtoToRoute(pbRoute) if err := n.router.Table().Create(route); err != nil && err != router.ErrDuplicateRoute { log.Debugf("Network node %s failed to add route: %v", n.id, err) } } // update your sync timestamp // NOTE: this might go away as we will be doing full table advert to random peer if err := n.RefreshSync(now); err != nil { log.Debugf("Network failed refreshing sync time: %v", err) } go func() { // get node peer graph to send back to the syncing node msg := PeersToProto(n.node, MaxDepth) // advertise yourself to the new node if err := n.sendTo("peer", NetworkChannel, peer, msg); err != nil { log.Debugf("Network failed to advertise peers: %v", err) } }() case "close": pbNetClose := &pbNet.Close{} if err := proto.Unmarshal(m.msg.Body, pbNetClose); err != nil { log.Debugf("Network tunnel [%s] close unmarshal error: %v", NetworkChannel, err) continue } // don't process your own messages if pbNetClose.Node.Id == n.options.Id { continue } log.Debugf("Network received close message from: %s", pbNetClose.Node.Id) peer := &node{ id: pbNetClose.Node.Id, address: pbNetClose.Node.Address, } if err := n.DeletePeerNode(peer.id); err != nil { log.Debugf("Network failed to delete node %s routes: %v", peer.id, err) } if err := n.prunePeerRoutes(peer); err != nil { log.Debugf("Network failed pruning peer %s routes: %v", peer.id, err) } // NOTE: we should maybe advertise this to the network so we converge faster on closed nodes // as opposed to our waiting until the node eventually gets pruned; something to think about // delete peer from the peerLinks n.Lock() delete(n.peerLinks, pbNetClose.Node.Address) n.Unlock() } case <-n.closed: return } } } // pruneRoutes prunes routes return by given query func (n *network) pruneRoutes(q ...router.QueryOption) error { routes, err := n.router.Table().Query(q...) if err != nil && err != router.ErrRouteNotFound { return err } for _, route := range routes { if err := n.router.Table().Delete(route); err != nil && err != router.ErrRouteNotFound { return err } } return nil } // pruneNodeRoutes prunes routes that were either originated by or routable via given node func (n *network) prunePeerRoutes(peer *node) error { // lookup all routes originated by router q := []router.QueryOption{ router.QueryRouter(peer.id), } if err := n.pruneRoutes(q...); err != nil { return err } // lookup all routes routable via gw q = []router.QueryOption{ router.QueryGateway(peer.address), } if err := n.pruneRoutes(q...); err != nil { return err } return nil } // manage the process of announcing to peers and prune any peer nodes that have not been // seen for a period of time. Also removes all the routes either originated by or routable // by the stale nodes. it also resolves nodes periodically and adds them to the tunnel func (n *network) manage() { rnd := rand.New(rand.NewSource(time.Now().UnixNano())) announce := time.NewTicker(AnnounceTime) defer announce.Stop() prune := time.NewTicker(PruneTime) defer prune.Stop() resolve := time.NewTicker(ResolveTime) defer resolve.Stop() netsync := time.NewTicker(SyncTime) defer netsync.Stop() // list of links we've sent to links := make(map[string]time.Time) for { select { case <-n.closed: return case <-announce.C: current := make(map[string]time.Time) // build link map of current links for _, link := range n.tunnel.Links() { if n.isLoopback(link) { continue } // get an existing timestamp if it exists current[link.Id()] = links[link.Id()] } // replace link map // we do this because a growing map is not // garbage collected links = current n.RLock() var i int // create a list of peers to send to var peers []*node // check peers to see if they need to be sent to for _, peer := range n.peers { if i >= 3 { break } // get last sent lastSent := links[peer.link] // check when we last sent to the peer // and send a peer message if we havent if lastSent.IsZero() || time.Since(lastSent) > KeepAliveTime { link := peer.link id := peer.id // might not exist for some weird reason if len(link) == 0 { // set the link via peer links l, ok := n.peerLinks[peer.address] if ok { log.Debugf("Network link not found for peer %s cannot announce", peer.id) continue } link = l.Id() } // add to the list of peers we're going to send to peers = append(peers, &node{ id: id, link: link, }) // increment our count i++ } } n.RUnlock() // peers to proto msg := PeersToProto(n.node, MaxDepth) // we're only going to send to max 3 peers at any given tick for _, peer := range peers { // advertise yourself to the network if err := n.sendTo("peer", NetworkChannel, peer, msg); err != nil { log.Debugf("Network failed to advertise peer %s: %v", peer.id, err) continue } // update last sent time links[peer.link] = time.Now() } // now look at links we may not have sent to. this may occur // where a connect message was lost for link, lastSent := range links { if !lastSent.IsZero() || time.Since(lastSent) < KeepAliveTime { continue } peer := &node{ // unknown id of the peer link: link, } // unknown link and peer so lets do the connect flow if err := n.sendTo("connect", NetworkChannel, peer, msg); err != nil { log.Debugf("Network failed to connect %s: %v", peer.id, err) continue } links[peer.link] = time.Now() } case <-prune.C: pruned := n.PruneStalePeers(PruneTime) for id, peer := range pruned { log.Debugf("Network peer exceeded prune time: %s", id) n.Lock() delete(n.peerLinks, peer.address) n.Unlock() if err := n.prunePeerRoutes(peer); err != nil { log.Debugf("Network failed pruning peer %s routes: %v", id, err) } } // get a list of all routes routes, err := n.options.Router.Table().List() if err != nil { log.Debugf("Network failed listing routes when pruning peers: %v", err) continue } // collect all the router IDs in the routing table routers := make(map[string]bool) for _, route := range routes { // check if its been processed if _, ok := routers[route.Router]; ok { continue } // mark as processed routers[route.Router] = true // if the router is in our peer graph do NOT delete routes originated by it if peer := n.node.GetPeerNode(route.Router); peer != nil { continue } // otherwise delete all the routes originated by it if err := n.pruneRoutes(router.QueryRouter(route.Router)); err != nil { log.Debugf("Network failed deleting routes by %s: %v", route.Router, err) } } case <-netsync.C: // get a list of node peers peers := n.Peers() // pick a random peer from the list of peers and request full sync peer := n.node.GetPeerNode(peers[rnd.Intn(len(peers))].Id()) if peer != nil { continue } go func() { // get node peer graph to send back to the connecting node node := PeersToProto(n.node, MaxDepth) msg := &pbNet.Sync{ Peer: node, } // get a list of all of our routes routes, err := n.options.Router.Table().List() switch err { case nil: // encode the routes to protobuf pbRoutes := make([]*pbRtr.Route, 0, len(routes)) for _, route := range routes { pbRoute := pbUtil.RouteToProto(route) pbRoutes = append(pbRoutes, pbRoute) } // pack the routes into the sync message msg.Routes = pbRoutes default: // we can't list the routes log.Debugf("Network node %s failed listing routes: %v", n.id, err) } // send sync message to the newly connected peer if err := n.sendTo("sync", NetworkChannel, peer, msg); err != nil { log.Debugf("Network failed to send sync message: %v", err) } }() case <-resolve.C: n.initNodes(false) } } } func (n *network) sendConnect() { // send connect message to NetworkChannel // NOTE: in theory we could do this as soon as // Dial to NetworkChannel succeeds, but instead // we initialize all other node resources first msg := &pbNet.Connect{ Node: &pbNet.Node{ Id: n.node.id, Address: n.node.address, }, } if err := n.sendMsg("connect", NetworkChannel, msg); err != nil { log.Debugf("Network failed to send connect message: %s", err) } } // sendTo sends a message to a specific node as a one off. // we need this because when links die, we have no discovery info, // and sending to an existing multicast link doesn't immediately work func (n *network) sendTo(method, channel string, peer *node, msg proto.Message) error { body, err := proto.Marshal(msg) if err != nil { return err } // Create a unicast connection to the peer but don't do the open/accept flow c, err := n.tunnel.Dial(channel, tunnel.DialWait(false), tunnel.DialLink(peer.link)) if err != nil { if peerNode := n.GetPeerNode(peer.id); peerNode != nil { log.Debugf("Network found peer %s: %v", peer.id, peerNode) // update node status when error happens peerNode.status.err.Update(err) log.Debugf("Network increment node peer %p %v count to: %d", peerNode, peerNode, peerNode.status.Error().Count()) if count := peerNode.status.Error().Count(); count == MaxPeerErrors { log.Debugf("Network node peer %v count exceeded %d: %d", peerNode, MaxPeerErrors, peerNode.status.Error().Count()) n.PrunePeer(peerNode.id) } } return err } defer c.Close() id := peer.id if len(id) == 0 { id = peer.link } log.Debugf("Network sending %s message from: %s to %s", method, n.options.Id, id) tmsg := &transport.Message{ Header: map[string]string{ "Micro-Method": method, }, Body: body, } // setting the peer header if len(peer.id) > 0 { tmsg.Header["Micro-Peer"] = peer.id } if err := c.Send(tmsg); err != nil { // TODO: Lookup peer in our graph if peerNode := n.GetPeerNode(peer.id); peerNode != nil { log.Debugf("Network found peer %s: %v", peer.id, peerNode) // update node status when error happens peerNode.status.err.Update(err) log.Debugf("Network increment node peer %p %v count to: %d", peerNode, peerNode, peerNode.status.Error().Count()) if count := peerNode.status.Error().Count(); count == MaxPeerErrors { log.Debugf("Network node peer %v count exceeded %d: %d", peerNode, MaxPeerErrors, peerNode.status.Error().Count()) n.PrunePeer(peerNode.id) } } return err } return nil } // sendMsg sends a message to the tunnel channel func (n *network) sendMsg(method, channel string, msg proto.Message) error { body, err := proto.Marshal(msg) if err != nil { return err } // check if the channel client is initialized n.RLock() client, ok := n.tunClient[channel] if !ok || client == nil { n.RUnlock() return ErrClientNotFound } n.RUnlock() log.Debugf("Network sending %s message from: %s", method, n.options.Id) return client.Send(&transport.Message{ Header: map[string]string{ "Micro-Method": method, }, Body: body, }) } // updatePeerLinks updates link for a given peer func (n *network) updatePeerLinks(peer *node) error { n.Lock() defer n.Unlock() linkId := peer.link log.Tracef("Network looking up link %s in the peer links", linkId) // lookup the peer link var peerLink tunnel.Link for _, link := range n.tunnel.Links() { if link.Id() == linkId { peerLink = link break } } if peerLink == nil { return ErrPeerLinkNotFound } // if the peerLink is found in the returned links update peerLinks log.Tracef("Network updating peer links for peer %s", peer.address) // lookup a link and update it if better link is available if link, ok := n.peerLinks[peer.address]; ok { // if the existing has better Length then the new, replace it if link.Length() < peerLink.Length() { n.peerLinks[peer.address] = peerLink } return nil } // add peerLink to the peerLinks map n.peerLinks[peer.address] = peerLink return nil } // isLoopback checks if a link is a loopback to ourselves func (n *network) isLoopback(link tunnel.Link) bool { // skip loopback if link.Loopback() { return true } // our advertise address loopback := n.server.Options().Advertise // actual address address := n.tunnel.Address() // if remote is ourselves switch link.Remote() { case loopback, address: return true } return false } // connect will wait for a link to be established and send the connect // message. We're trying to ensure convergence pretty quickly. So we want // to hear back. In the case we become completely disconnected we'll // connect again once a new link is established func (n *network) connect() { // discovered lets us know what we received a peer message back var discovered bool var attempts int for { // connected is used to define if the link is connected var connected bool // check the links state for _, link := range n.tunnel.Links() { // skip loopback if n.isLoopback(link) { continue } if link.State() == "connected" { connected = true break } } // if we're not connected wait if !connected { // reset discovered discovered = false // sleep for a second time.Sleep(time.Second) // now try again continue } // we're connected but are we discovered? if !discovered { // recreate the clients because all the tunnel links are gone // so we haven't send discovery beneath // NOTE: when starting the tunnel for the first time we might be recreating potentially // well functioning tunnel clients as "discovered" will be false until the // n.discovered channel is read at some point later on. if err := n.createClients(); err != nil { log.Debugf("Failed to recreate network/control clients: %v", err) continue } // send the connect message n.sendConnect() } // check if we've been discovered select { case <-n.discovered: discovered = true attempts = 0 case <-n.closed: return case <-time.After(time.Second + backoff.Do(attempts)): // we have to try again attempts++ // reset attempts 5 == ~2mins if attempts > 5 { attempts = 0 } } } } // Connect connects the network func (n *network) Connect() error { n.Lock() defer n.Unlock() // connect network tunnel if err := n.tunnel.Connect(); err != nil { return err } // return if already connected if n.connected { // initialise the nodes n.initNodes(false) // send the connect message go n.sendConnect() return nil } // initialise the nodes n.initNodes(true) // set our internal node address // if advertise address is not set if len(n.options.Advertise) == 0 { n.server.Init(server.Advertise(n.tunnel.Address())) } // listen on NetworkChannel netListener, err := n.tunnel.Listen( NetworkChannel, tunnel.ListenMode(tunnel.Multicast), ) if err != nil { return err } // listen on ControlChannel ctrlListener, err := n.tunnel.Listen( ControlChannel, tunnel.ListenMode(tunnel.Multicast), ) if err != nil { return err } // dial into ControlChannel to send route adverts ctrlClient, err := n.tunnel.Dial( ControlChannel, tunnel.DialMode(tunnel.Multicast), ) if err != nil { return err } n.tunClient[ControlChannel] = ctrlClient // dial into NetworkChannel to send network messages netClient, err := n.tunnel.Dial( NetworkChannel, tunnel.DialMode(tunnel.Multicast), ) if err != nil { return err } n.tunClient[NetworkChannel] = netClient // create closed channel n.closed = make(chan bool) // start the router if err := n.options.Router.Start(); err != nil { return err } // start advertising routes advertChan, err := n.options.Router.Advertise() if err != nil { return err } // start the server if err := n.server.Start(); err != nil { return err } // advertise service routes go n.advertise(advertChan) // listen to network messages go n.processNetChan(netListener) // accept and process routes go n.processCtrlChan(ctrlListener) // manage connection once links are established go n.connect() // resolve nodes, broadcast announcements and prune stale nodes go n.manage() // we're now connected n.connected = true return nil } func (n *network) close() error { // stop the server if err := n.server.Stop(); err != nil { return err } // stop the router if err := n.router.Stop(); err != nil { return err } // close the tunnel if err := n.tunnel.Close(); err != nil { return err } return nil } // createClients is used to create new clients in the event we lose all the tunnels func (n *network) createClients() error { // dial into ControlChannel to send route adverts ctrlClient, err := n.tunnel.Dial(ControlChannel, tunnel.DialMode(tunnel.Multicast)) if err != nil { return err } // dial into NetworkChannel to send network messages netClient, err := n.tunnel.Dial(NetworkChannel, tunnel.DialMode(tunnel.Multicast)) if err != nil { return err } n.Lock() defer n.Unlock() // set the control client c, ok := n.tunClient[ControlChannel] if ok { c.Close() } n.tunClient[ControlChannel] = ctrlClient // set the network client c, ok = n.tunClient[NetworkChannel] if ok { c.Close() } n.tunClient[NetworkChannel] = netClient return nil } // Close closes network connection func (n *network) Close() error { n.Lock() if !n.connected { n.Unlock() return nil } select { case <-n.closed: n.Unlock() return nil default: // TODO: send close message to the network channel close(n.closed) // set connected to false n.connected = false // unlock the lock otherwise we'll deadlock sending the close n.Unlock() msg := &pbNet.Close{ Node: &pbNet.Node{ Id: n.node.id, Address: n.node.address, }, } if err := n.sendMsg("close", NetworkChannel, msg); err != nil { log.Debugf("Network failed to send close message: %s", err) } <-time.After(time.Millisecond * 100) } return n.close() } // Client returns network client func (n *network) Client() client.Client { return n.client } // Server returns network server func (n *network) Server() server.Server { return n.server }