micro/network/default.go
2019-07-01 22:59:11 +01:00

729 lines
16 KiB
Go

package network
import (
"crypto/sha256"
"fmt"
"io"
"runtime/debug"
"sync"
"time"
gproto "github.com/golang/protobuf/proto"
"github.com/google/uuid"
"github.com/micro/go-micro/codec"
"github.com/micro/go-micro/codec/proto"
"github.com/micro/go-micro/config/options"
"github.com/micro/go-micro/network/proxy"
"github.com/micro/go-micro/network/proxy/mucp"
"github.com/micro/go-micro/network/resolver"
"github.com/micro/go-micro/network/router"
"github.com/micro/go-micro/registry"
"github.com/micro/go-micro/transport"
"github.com/micro/go-micro/util/log"
pb "github.com/micro/go-micro/network/proto"
nreg "github.com/micro/go-micro/network/resolver/registry"
)
type network struct {
options.Options
// resolver use to connect to the network
resolver resolver.Resolver
// router used to find routes in the network
router router.Router
// proxy used to route through the network
proxy proxy.Proxy
// id of this network
id string
// links maintained for this network
// based on peers not nodes. maybe maintain
// node separately or note that links have nodes
mtx sync.RWMutex
links []Link
}
type node struct {
*network
// closed channel
closed chan bool
mtx sync.RWMutex
// the node id
id string
// address of this node
address string
// the node registry
registry registry.Registry
// the base level transport
transport transport.Transport
// the listener
listener transport.Listener
// leases for connections to us
// link id:link
links map[string]*link
}
type link struct {
// the embedded node
*node
// the link id
id string
// queue buffer for this link
queue chan *Message
// the socket for this link
socket *socket
// the lease for this link
lease *pb.Lease
// length and weight of the link
mtx sync.RWMutex
// determines the cost of the link
// based on queue length and roundtrip
length int
weight int
}
type socket struct {
node *node
codec codec.Marshaler
socket transport.Socket
}
// network methods
// lease generates a new lease with a node id/address
// TODO: use a consensus mechanism, pool or some deterministic
// unique prefixing method.
func (n *network) lease() *pb.Lease {
// create the id
id := uuid.New().String()
// create a timestamp
now := time.Now().UnixNano()
// create the address
h := sha256.New()
h.Write([]byte(fmt.Sprintf("%s-%d\n", id, now)))
address := fmt.Sprintf("%x", h.Sum(nil))
// return the node
return &pb.Lease{
Id: id,
Timestamp: now,
Node: &pb.Node{
Id: id,
Address: address,
},
}
}
// lookup returns a list of network records in priority order of local
func (n *network) lookup(r registry.Registry) []*resolver.Record {
// create a registry resolver to find local nodes
rr := nreg.Resolver{Registry: r}
// get all the nodes for the network that are local
localRecords, err := rr.Resolve("network:" + n.Id())
if err != nil {
// we're not in a good place here
}
// if its a local network we never try lookup anything else
if n.Id() == "local" {
return localRecords
}
// now resolve incrementally based on resolvers specified
networkRecords, err := n.resolver.Resolve(n.Id())
if err != nil {
// still not in a good place
}
// return aggregate records
return append(localRecords, networkRecords...)
}
func (n *network) Id() string {
return n.id
}
// Connect connects to the network and returns a new node.
// The node is the callers connection to the network. They
// should advertise this address to people. Anyone else
// on the network should be able to route to it.
func (n *network) Connect() (Node, error) {
// create a new node
node := new(node)
// closed channel
node.closed = make(chan bool)
// set the nodes network
node.network = n
// initially we have no id
// create an id and address
// TODO: create a real unique id and address
// lease := n.lease()
// set the node id
// node.id = lease.Node.Id
// get the transport we're going to use for our tunnels
t, ok := n.Options.Values().Get("network.transport")
if ok {
node.transport = t.(transport.Transport)
} else {
// TODO: set to quic
node.transport = transport.DefaultTransport
}
// we listen on a random address, this is not advertised
// TODO: use util/addr to get something anyone in the same private network can talk to
l, err := node.transport.Listen(":0")
if err != nil {
return nil, err
}
// set the listener
node.listener = l
// TODO: this should be an overlay address
// ideally received via some dhcp style broadcast
node.address = l.Addr()
// TODO: start the router and broadcast advertisements
// receive updates and push them to the network in accept(l) below
// chan, err := n.router.Advertise()
// u <- chan
// socket.send("route", u)
// u := socket.recv() => r.router.Update(u)
// process any incoming messages on the listener
// this is our inbound network connection
node.accept(l)
// register the node with the registry for the network
// TODO: use a registrar or something else for local things
r, ok := n.Options.Values().Get("network.registry")
if ok {
node.registry = r.(registry.Registry)
} else {
node.registry = registry.DefaultRegistry
}
// lookup the network to see if there's any nodes
records := n.lookup(node.registry)
// should we actually do this?
if len(records) == 0 {
// set your own node id
lease := n.lease()
node.id = lease.Node.Id
}
// register self with the network registry
// this is a local registry of nodes separate to the resolver
// maybe consolidate registry/resolver
// TODO: find a way to do this via gossip or something else
if err := node.registry.Register(&registry.Service{
// register with the network id
Name: "network:" + n.Id(),
Nodes: []*registry.Node{
{Id: node.id, Address: node.address},
},
}); err != nil {
node.Close()
return nil, err
}
// create a channel to get links
linkChan := make(chan *link, 1)
// we're going to wait for the first connection
go node.connect(linkChan)
// wait forever to connect
// TODO: do something with the links we receive
<-linkChan
return node, nil
}
// TODO: establish links for peering networks
func (n *network) Peer(Network) (Link, error) {
// New network was created using NewNetwork after receiving routes from a different node
// Connect to the new network and be assigned a node
// Transfer data between the networks
// take other resolver
// order: registry (local), ...resolver
// resolve the network
// periodically connect to nodes resolved in the network
// and add to the network links
return nil, nil
}
func (n *network) Links() ([]Link, error) {
n.mtx.RLock()
defer n.mtx.RUnlock()
return n.links, nil
}
// node methods
// Accept processes the incoming messages on its listener.
// This listener was created with the first call to network.Connect.
// Any inbound new socket here is essentially something else attempting
// to connect to the network. So we turn it into a socket, then process it.
func (n *node) accept(l transport.Listener) error {
return l.Accept(func(sock transport.Socket) {
defer func() {
// close socket
sock.Close()
if r := recover(); r != nil {
log.Log("panic recovered: ", r)
log.Log(string(debug.Stack()))
}
}()
// create a new link
// generate a new link
link := &link{
node: n,
id: uuid.New().String(),
}
// create a new network socket
sk := new(socket)
sk.node = n
sk.codec = proto.Marshaler{}
sk.socket = sock
// set link socket
link.socket = sk
// accept messages on the socket
// blocks forever or until error
if err := link.up(); err != nil {
// TODO: delete link
}
})
}
// connect attempts to periodically connect to new nodes in the network.
// It will only do this if it has less than 3 connections. this method
// is called by network.Connect and fired in a go routine after establishing
// the first connection and creating a node. The node attempts to maintain
// its connection to the network via multiple links.
func (n *node) connect(linkChan chan *link) {
// TODO: adjustable ticker
t := time.NewTicker(time.Second)
var lease *pb.Lease
for {
select {
// on every tick check the number of links and then attempt
// to connect to new nodes if we don't have sufficient links
case <-t.C:
n.mtx.RLock()
// only start processing if we have less than 3 links
if len(n.links) > 2 {
n.mtx.RUnlock()
continue
}
// get a list of link addresses so we don't reconnect
// to the ones we're already connected to
nodes := map[string]bool{}
for _, l := range n.links {
nodes[l.lease.Node.Address] = true
}
n.mtx.RUnlock()
records := n.network.lookup(n.registry)
// for each record check we haven't already got a connection
// attempt to dial it, create a new socket and call
// connect with our existing network lease.
// if its the first call we don't actually have a lease
// TODO: determine how to prioritise local records
// while still connecting to the global network
for _, record := range records {
// skip existing connections
if nodes[record.Address] {
continue
}
// attempt to connect and create a link
// connect to the node
s, err := n.transport.Dial(record.Address)
if err != nil {
continue
}
// create a new socket
sk := &socket{
node: n,
codec: &proto.Marshaler{},
socket: s,
}
// broadcast a "connect" request and get back "lease"
// this is your tunnel to the outside world and to the network
// then push updates and messages over this link
// first connect will not have a lease so we get one with node id/address
l, err := sk.connect(lease)
if err != nil {
s.Close()
continue
}
// set lease for next time
lease = l
// create a new link with the lease and socket
link := &link{
id: uuid.New().String(),
lease: lease,
node: n,
queue: make(chan *Message, 128),
socket: sk,
}
// bring up the link
go link.up()
// save the new link
n.mtx.Lock()
n.links[link.id] = link
n.mtx.Unlock()
// drop this down the link channel to the network
// so it can manage the links
select {
case linkChan <- link:
// we don't wait for anyone
default:
}
}
case <-n.closed:
return
}
}
}
func (n *node) Address() string {
return n.address
}
// Close shutdowns all the links and closes the listener
func (n *node) Close() error {
select {
case <-n.closed:
return nil
default:
close(n.closed)
// shutdown all the links
n.mtx.Lock()
for id, link := range n.links {
link.down()
delete(n.links, id)
}
n.mtx.Unlock()
// deregister self
n.registry.Deregister(&registry.Service{
Name: "network:" + n.network.Id(),
Nodes: []*registry.Node{
{Id: n.id, Address: n.address},
},
})
return n.listener.Close()
}
return nil
}
func (n *node) Accept() (*Message, error) {
// process the inbound cruft
return nil, nil
}
func (n *node) Links() ([]Link, error) {
n.mtx.RLock()
defer n.mtx.RUnlock()
var links []Link
for _, l := range n.links {
links = append(links, l)
}
return links, nil
}
func (n *node) Network() string {
return n.network.id
}
func (n *node) Send(m *Message) error {
n.mtx.RLock()
defer n.mtx.RUnlock()
var gerr error
// send to all links
// TODO: be smarter
for _, link := range n.links {
// TODO: process the error, do some link flap detection
// blackhold the connection, etc
if err := link.socket.send(m, nil); err != nil {
gerr = err
continue
}
}
return gerr
}
// link methods
// bring up the link
func (l *link) up() error {
// TODO: manage the length/weight of the link
return l.socket.accept()
}
// kill the link
func (l *link) down() error {
return l.socket.close()
}
func (l *link) Length() int {
l.mtx.RLock()
defer l.mtx.RUnlock()
return l.length
}
func (l *link) Weight() int {
l.mtx.RLock()
defer l.mtx.RUnlock()
return l.weight
}
// accept is the state machine that processes messages on the socket
func (s *socket) accept() error {
for {
m := new(transport.Message)
err := s.socket.Recv(m)
if err == io.EOF {
return nil
}
if err != nil {
return err
}
// TODO: pick a reliable header
event := m.Header["Micro-Method"]
switch event {
// connect event
case "connect":
// process connect events from network.Connect()
// these are new connections to join the network
// decode the connection event
conn := new(pb.Connect)
if err := s.codec.Unmarshal(m.Body, conn); err != nil {
// skip error
continue
}
// get the existing lease if it exists
lease := conn.Lease
if lease == nil {
// create a new lease/node
lease = s.node.network.lease()
}
// send back a lease offer for the node
if err := s.send(&Message{
Header: map[string]string{
"Micro-Method": "lease",
},
}, lease); err != nil {
return err
}
// record this mapping of socket to node/lease
s.node.mtx.Lock()
id := uuid.New().String()
s.node.links[id] = &link{
node: s.node,
id: id,
lease: lease,
queue: make(chan *Message, 128),
socket: s,
}
s.node.mtx.Unlock()
// a route update
case "route":
// process router events
// received a lease
case "lease":
// no op as we don't process lease events on existing connections
// these are in response to a connect message
default:
// process all other messages
}
}
}
func (s *socket) close() error {
return s.socket.Close()
}
// connect sends a connect request and waits on a lease.
// this is for a new connection. in the event we send
// an existing lease, the same lease should be returned.
// if it differs then we assume our address for this link
// is different...
func (s *socket) connect(l *pb.Lease) (*pb.Lease, error) {
// send a lease request
if err := s.send(&Message{
Header: map[string]string{
"Micro-Method": "connect",
},
}, &pb.Connect{Lease: l}); err != nil {
return nil, err
}
// create the new things
tm := new(Message)
lease := new(pb.Lease)
// wait for a lease response
if err := s.recv(tm, lease); err != nil {
return nil, err
}
return lease, nil
}
func (s *socket) send(m *Message, v interface{}) error {
tm := new(transport.Message)
tm.Header = m.Header
tm.Body = m.Body
// set the body if not nil
// we're assuming this is network message
if v != nil {
// encode the data
b, err := s.codec.Marshal(v)
if err != nil {
return err
}
// set the content type
tm.Header["Content-Type"] = "application/protobuf"
// set the marshalled body
tm.Body = b
}
// send via the transport socket
return s.socket.Send(&transport.Message{
Header: m.Header,
Body: m.Body,
})
}
func (s *socket) recv(m *Message, v interface{}) error {
if m.Header == nil {
m.Header = make(map[string]string)
}
tm := new(transport.Message)
// receive the transport message
if err := s.socket.Recv(tm); err != nil {
return err
}
// set the message
m.Header = tm.Header
m.Body = tm.Body
// bail early
if v == nil {
return nil
}
// try unmarshal the body
// skip if there's no content-type
if tm.Header["Content-Type"] != "application/protobuf" {
return nil
}
// return unmarshalled
return s.codec.Unmarshal(m.Body, v.(gproto.Message))
}
// newNetwork returns a new network interface
func newNetwork(opts ...options.Option) *network {
options := options.NewOptions(opts...)
// new network instance
net := &network{
id: DefaultId,
}
// get network id
id, ok := options.Values().Get("network.id")
if ok {
net.id = id.(string)
}
// get router
r, ok := options.Values().Get("network.router")
if ok {
net.router = r.(router.Router)
} else {
net.router = router.DefaultRouter
}
// get proxy
p, ok := options.Values().Get("network.proxy")
if ok {
net.proxy = p.(proxy.Proxy)
} else {
net.proxy = new(mucp.Proxy)
}
// get resolver
res, ok := options.Values().Get("network.resolver")
if ok {
net.resolver = res.(resolver.Resolver)
} else {
net.resolver = new(nreg.Resolver)
}
return net
}