micro/network/default.go

901 lines
21 KiB
Go

package network
import (
"container/list"
"sync"
"time"
"github.com/golang/protobuf/proto"
"github.com/micro/go-micro/client"
rtr "github.com/micro/go-micro/client/selector/router"
pbNet "github.com/micro/go-micro/network/proto"
"github.com/micro/go-micro/proxy"
"github.com/micro/go-micro/router"
pbRtr "github.com/micro/go-micro/router/proto"
"github.com/micro/go-micro/server"
"github.com/micro/go-micro/transport"
"github.com/micro/go-micro/tunnel"
tun "github.com/micro/go-micro/tunnel/transport"
"github.com/micro/go-micro/util/log"
)
var (
// NetworkChannel is the name of the tunnel channel for passing network messages
NetworkChannel = "network"
// ControlChannel is the name of the tunnel channel for passing control message
ControlChannel = "control"
// DefaultLink is default network link
DefaultLink = "network"
)
// node is network node
type node struct {
// id is node id
id string
// address is node address
address string
// neighbours maps the node neighbourhood
neighbours map[string]*node
// network returns the node network
network Network
// lastSeen stores the time the node has been seen last time
lastSeen time.Time
}
// Id is node ide
func (n *node) Id() string {
return n.id
}
// Address returns node address
func (n *node) Address() string {
return n.address
}
// Network returns node network
func (n *node) Network() Network {
return n.network
}
// Neighbourhood returns node neighbourhood
func (n *node) Neighbourhood() []Node {
var nodes []Node
for _, node := range n.neighbours {
nodes = append(nodes, node)
}
return nodes
}
// network implements Network interface
type network struct {
// node is network node
*node
// options configure the network
options Options
// rtr is network router
router.Router
// prx is network proxy
proxy.Proxy
// tun is network tunnel
tunnel.Tunnel
// server is network server
server server.Server
// client is network client
client client.Client
// tunClient is a map of tunnel clients keyed over tunnel channel names
tunClient map[string]transport.Client
sync.RWMutex
// connected marks the network as connected
connected bool
// closed closes the network
closed chan bool
}
// newNetwork returns a new network node
func newNetwork(opts ...Option) Network {
options := DefaultOptions()
for _, o := range opts {
o(&options)
}
// init tunnel address to the network bind address
options.Tunnel.Init(
tunnel.Address(options.Address),
tunnel.Nodes(options.Nodes...),
)
// init router Id to the network id
options.Router.Init(
router.Id(options.Id),
)
// create tunnel client with tunnel transport
tunTransport := tun.NewTransport(
tun.WithTunnel(options.Tunnel),
)
// server is network server
server := server.NewServer(
server.Id(options.Id),
server.Address(options.Address),
server.Name(options.Name),
server.Transport(tunTransport),
)
// client is network client
client := client.NewClient(
client.Transport(tunTransport),
client.Selector(
rtr.NewSelector(
rtr.WithRouter(options.Router),
),
),
)
network := &network{
node: &node{
id: options.Id,
address: options.Address,
neighbours: make(map[string]*node),
},
options: options,
Router: options.Router,
Proxy: options.Proxy,
Tunnel: options.Tunnel,
server: server,
client: client,
tunClient: make(map[string]transport.Client),
}
network.node.network = network
return network
}
// Options returns network options
func (n *network) Options() Options {
n.Lock()
options := n.options
n.Unlock()
return options
}
// Name returns network name
func (n *network) Name() string {
return n.options.Name
}
// Address returns network bind address
func (n *network) Address() string {
return n.Tunnel.Address()
}
// resolveNodes resolves network nodes to addresses
func (n *network) resolveNodes() ([]string, error) {
// resolve the network address to network nodes
records, err := n.options.Resolver.Resolve(n.options.Name)
if err != nil {
return nil, err
}
nodeMap := make(map[string]bool)
// collect network node addresses
var nodes []string
for _, record := range records {
nodes = append(nodes, record.Address)
nodeMap[record.Address] = true
}
// append seed nodes if we have them
for _, node := range n.options.Nodes {
if _, ok := nodeMap[node]; !ok {
nodes = append(nodes, node)
}
}
return nodes, nil
}
// resolve continuously resolves network nodes and initializes network tunnel with resolved addresses
func (n *network) resolve() {
resolve := time.NewTicker(ResolveTime)
defer resolve.Stop()
for {
select {
case <-n.closed:
return
case <-resolve.C:
nodes, err := n.resolveNodes()
if err != nil {
log.Debugf("Network failed to resolve nodes: %v", err)
continue
}
// initialize the tunnel
n.Tunnel.Init(
tunnel.Nodes(nodes...),
)
}
}
}
// handleNetConn handles network announcement messages
func (n *network) handleNetConn(sess tunnel.Session, msg chan *transport.Message) {
for {
m := new(transport.Message)
if err := sess.Recv(m); err != nil {
// TODO: should we bail here?
log.Debugf("Network tunnel [%s] receive error: %v", NetworkChannel, err)
return
}
select {
case msg <- m:
case <-n.closed:
return
}
}
}
// acceptNetConn accepts connections from NetworkChannel
func (n *network) acceptNetConn(l tunnel.Listener, recv chan *transport.Message) {
for {
// accept a connection
conn, err := l.Accept()
if err != nil {
// TODO: handle this
log.Debugf("Network tunnel [%s] accept error: %v", NetworkChannel, err)
return
}
select {
case <-n.closed:
return
default:
// go handle NetworkChannel connection
go n.handleNetConn(conn, recv)
}
}
}
// processNetChan processes messages received on NetworkChannel
func (n *network) processNetChan(l tunnel.Listener) {
// receive network message queue
recv := make(chan *transport.Message, 128)
// accept NetworkChannel connections
go n.acceptNetConn(l, recv)
for {
select {
case m := <-recv:
// switch on type of message and take action
switch m.Header["Micro-Method"] {
case "connect":
pbNetConnect := &pbNet.Connect{}
if err := proto.Unmarshal(m.Body, pbNetConnect); err != nil {
log.Debugf("Network tunnel [%s] connect unmarshal error: %v", NetworkChannel, err)
continue
}
// don't process your own messages
if pbNetConnect.Node.Id == n.options.Id {
continue
}
neighbour := &node{
id: pbNetConnect.Node.Id,
address: pbNetConnect.Node.Address,
neighbours: make(map[string]*node),
}
n.Lock()
n.neighbours[neighbour.id] = neighbour
n.Unlock()
case "neighbour":
pbNetNeighbour := &pbNet.Neighbour{}
if err := proto.Unmarshal(m.Body, pbNetNeighbour); err != nil {
log.Debugf("Network tunnel [%s] neighbour unmarshal error: %v", NetworkChannel, err)
continue
}
// don't process your own messages
if pbNetNeighbour.Node.Id == n.options.Id {
continue
}
neighbour := &node{
id: pbNetNeighbour.Node.Id,
address: pbNetNeighbour.Node.Address,
neighbours: make(map[string]*node),
lastSeen: time.Now(),
}
n.Lock()
// we override the existing neighbour map
n.neighbours[neighbour.id] = neighbour
// store the neighbouring node and its neighbours
for _, pbNeighbour := range pbNetNeighbour.Neighbours {
neighbourNode := &node{
id: pbNeighbour.Id,
address: pbNeighbour.Address,
}
n.neighbours[neighbour.id].neighbours[neighbourNode.id] = neighbourNode
}
n.Unlock()
case "close":
pbNetClose := &pbNet.Close{}
if err := proto.Unmarshal(m.Body, pbNetClose); err != nil {
log.Debugf("Network tunnel [%s] close unmarshal error: %v", NetworkChannel, err)
continue
}
// don't process your own messages
if pbNetClose.Node.Id == n.options.Id {
continue
}
n.Lock()
if err := n.pruneNode(pbNetClose.Node.Id); err != nil {
log.Debugf("Network failed to prune the node %s: %v", pbNetClose.Node.Id, err)
continue
}
n.Unlock()
}
case <-n.closed:
return
}
}
}
// announce announces node neighbourhood to the network
func (n *network) announce(client transport.Client) {
announce := time.NewTicker(AnnounceTime)
defer announce.Stop()
for {
select {
case <-n.closed:
return
case <-announce.C:
n.RLock()
nodes := make([]*pbNet.Node, len(n.neighbours))
i := 0
for id, _ := range n.neighbours {
nodes[i] = &pbNet.Node{
Id: id,
Address: n.neighbours[id].address,
}
i++
}
n.RUnlock()
node := &pbNet.Node{
Id: n.options.Id,
Address: n.options.Address,
}
pbNetNeighbour := &pbNet.Neighbour{
Node: node,
Neighbours: nodes,
}
body, err := proto.Marshal(pbNetNeighbour)
if err != nil {
// TODO: should we bail here?
log.Debugf("Network failed to marshal neighbour message: %v", err)
continue
}
// create transport message and chuck it down the pipe
m := transport.Message{
Header: map[string]string{
"Micro-Method": "neighbour",
},
Body: body,
}
if err := client.Send(&m); err != nil {
log.Debugf("Network failed to send neighbour messsage: %v", err)
continue
}
}
}
}
// pruneNode removes a node with given id from the list of neighbours. It also removes all routes originted by this node.
// NOTE: this method is not thread-safe; when calling it make sure you lock the particular code segment
func (n *network) pruneNode(id string) error {
delete(n.neighbours, id)
// lookup all the routes originated at this node
q := router.NewQuery(
router.QueryRouter(id),
)
routes, err := n.Router.Table().Query(q)
if err != nil && err != router.ErrRouteNotFound {
return err
}
// delete the found routes
for _, route := range routes {
if err := n.Router.Table().Delete(route); err != nil && err != router.ErrRouteNotFound {
return err
}
}
return nil
}
// prune the nodes that have not been seen for certain period of time defined by PruneTime
// Additionally, prune also removes all the routes originated by these nodes
func (n *network) prune() {
prune := time.NewTicker(PruneTime)
defer prune.Stop()
for {
select {
case <-n.closed:
return
case <-prune.C:
n.Lock()
for id, node := range n.neighbours {
nodeAge := time.Since(node.lastSeen)
if nodeAge > PruneTime {
log.Debugf("Network deleting node %s: reached prune time threshold", id)
if err := n.pruneNode(id); err != nil {
log.Debugf("Network failed to prune the node %s: %v", id, err)
continue
}
}
}
n.Unlock()
}
}
}
// handleCtrlConn handles ControlChannel connections
func (n *network) handleCtrlConn(sess tunnel.Session, msg chan *transport.Message) {
for {
m := new(transport.Message)
if err := sess.Recv(m); err != nil {
// TODO: should we bail here?
log.Debugf("Network tunnel advert receive error: %v", err)
return
}
select {
case msg <- m:
case <-n.closed:
return
}
}
}
// acceptCtrlConn accepts connections from ControlChannel
func (n *network) acceptCtrlConn(l tunnel.Listener, recv chan *transport.Message) {
for {
// accept a connection
conn, err := l.Accept()
if err != nil {
// TODO: handle this
log.Debugf("Network tunnel [%s] accept error: %v", ControlChannel, err)
return
}
select {
case <-n.closed:
return
default:
// go handle ControlChannel connection
go n.handleCtrlConn(conn, recv)
}
}
}
// setRouteMetric calculates metric of the route and updates it in place
// - Local route metric is 1
// - Routes with ID of adjacent neighbour are 10
// - Routes of neighbours of the advertiser are 100
// - Routes beyond your neighbourhood are 1000
func (n *network) setRouteMetric(route *router.Route) {
// we are the origin of the route
if route.Router == n.options.Id {
route.Metric = 1
return
}
n.RLock()
// check if the route origin is our neighbour
if _, ok := n.neighbours[route.Router]; ok {
route.Metric = 10
n.RUnlock()
return
}
// check if the route origin is the neighbour of our neighbour
for _, node := range n.neighbours {
for id, _ := range node.neighbours {
if route.Router == id {
route.Metric = 100
n.RUnlock()
return
}
}
}
n.RUnlock()
// the origin of the route is beyond our neighbourhood
route.Metric = 1000
}
// processCtrlChan processes messages received on ControlChannel
func (n *network) processCtrlChan(l tunnel.Listener) {
// receive control message queue
recv := make(chan *transport.Message, 128)
// accept ControlChannel cconnections
go n.acceptCtrlConn(l, recv)
for {
select {
case m := <-recv:
// switch on type of message and take action
switch m.Header["Micro-Method"] {
case "advert":
pbRtrAdvert := &pbRtr.Advert{}
if err := proto.Unmarshal(m.Body, pbRtrAdvert); err != nil {
log.Debugf("Network fail to unmarshal advert message: %v", err)
continue
}
// loookup advertising node in our neighbourhood
n.RLock()
advertNode, ok := n.neighbours[pbRtrAdvert.Id]
if !ok {
// advertising node has not been registered as our neighbour, yet
// let's add it to the map of our neighbours
advertNode = &node{
id: pbRtrAdvert.Id,
neighbours: make(map[string]*node),
}
n.neighbours[pbRtrAdvert.Id] = advertNode
}
n.RUnlock()
var events []*router.Event
for _, event := range pbRtrAdvert.Events {
// set the address of the advertising node
// we know Route.Gateway is the address of advertNode
// NOTE: this is true only when advertNode had not been registered
// as our neighbour when we received the advert from it
if advertNode.address == "" {
advertNode.address = event.Route.Gateway
}
// if advertising node id is not the same as Route.Router
// we know the advertising node is not the origin of the route
if advertNode.id != event.Route.Router {
// if the origin router is not in the advertising node neighbourhood
// we can't rule out potential routing loops so we bail here
if _, ok := advertNode.neighbours[event.Route.Router]; !ok {
continue
}
}
route := router.Route{
Service: event.Route.Service,
Address: event.Route.Address,
Gateway: event.Route.Gateway,
Network: event.Route.Network,
Router: event.Route.Router,
Link: event.Route.Link,
Metric: int(event.Route.Metric),
}
// set the route metric
n.setRouteMetric(&route)
// throw away metric bigger than 1000
if route.Metric > 1000 {
continue
}
// create router event
e := &router.Event{
Type: router.EventType(event.Type),
Timestamp: time.Unix(0, pbRtrAdvert.Timestamp),
Route: route,
}
events = append(events, e)
}
advert := &router.Advert{
Id: pbRtrAdvert.Id,
Type: router.AdvertType(pbRtrAdvert.Type),
Timestamp: time.Unix(0, pbRtrAdvert.Timestamp),
TTL: time.Duration(pbRtrAdvert.Ttl),
Events: events,
}
if err := n.Router.Process(advert); err != nil {
log.Debugf("Network failed to process advert %s: %v", advert.Id, err)
continue
}
}
case <-n.closed:
return
}
}
}
// advertise advertises routes to the network
func (n *network) advertise(client transport.Client, advertChan <-chan *router.Advert) {
for {
select {
// process local adverts and randomly fire them at other nodes
case advert := <-advertChan:
// create a proto advert
var events []*pbRtr.Event
for _, event := range advert.Events {
// NOTE: we override the Gateway and Link fields here
route := &pbRtr.Route{
Service: event.Route.Service,
Address: event.Route.Address,
Gateway: n.options.Address,
Network: event.Route.Network,
Router: event.Route.Router,
Link: DefaultLink,
Metric: int64(event.Route.Metric),
}
e := &pbRtr.Event{
Type: pbRtr.EventType(event.Type),
Timestamp: event.Timestamp.UnixNano(),
Route: route,
}
events = append(events, e)
}
pbRtrAdvert := &pbRtr.Advert{
Id: advert.Id,
Type: pbRtr.AdvertType(advert.Type),
Timestamp: advert.Timestamp.UnixNano(),
Events: events,
}
body, err := proto.Marshal(pbRtrAdvert)
if err != nil {
// TODO: should we bail here?
log.Debugf("Network failed to marshal advert message: %v", err)
continue
}
// create transport message and chuck it down the pipe
m := transport.Message{
Header: map[string]string{
"Micro-Method": "advert",
},
Body: body,
}
if err := client.Send(&m); err != nil {
log.Debugf("Network failed to send advert %s: %v", pbRtrAdvert.Id, err)
continue
}
case <-n.closed:
return
}
}
}
// Connect connects the network
func (n *network) Connect() error {
n.Lock()
defer n.Unlock()
// return if already connected
if n.connected {
return nil
}
// try to resolve network nodes
nodes, err := n.resolveNodes()
if err != nil {
log.Debugf("Network failed to resolve nodes: %v", err)
}
// connect network tunnel
if err := n.Tunnel.Connect(); err != nil {
return err
}
// initialize the tunnel to resolved nodes
n.Tunnel.Init(
tunnel.Nodes(nodes...),
)
// dial into ControlChannel to send route adverts
ctrlClient, err := n.Tunnel.Dial(ControlChannel)
if err != nil {
return err
}
n.tunClient[ControlChannel] = ctrlClient
// listen on ControlChannel
ctrlListener, err := n.Tunnel.Listen(ControlChannel)
if err != nil {
return err
}
// dial into NetworkChannel to send network messages
netClient, err := n.Tunnel.Dial(NetworkChannel)
if err != nil {
return err
}
n.tunClient[NetworkChannel] = netClient
// listen on NetworkChannel
netListener, err := n.Tunnel.Listen(NetworkChannel)
if err != nil {
return err
}
// create closed channel
n.closed = make(chan bool)
// start the router
if err := n.options.Router.Start(); err != nil {
return err
}
// start advertising routes
advertChan, err := n.options.Router.Advertise()
if err != nil {
return err
}
// start the server
if err := n.server.Start(); err != nil {
return err
}
// go resolving network nodes
go n.resolve()
// broadcast neighbourhood
go n.announce(netClient)
// prune stale nodes
go n.prune()
// listen to network messages
go n.processNetChan(netListener)
// advertise service routes
go n.advertise(ctrlClient, advertChan)
// accept and process routes
go n.processCtrlChan(ctrlListener)
// set connected to true
n.connected = true
// send connect message to NetworkChannel
node := &pbNet.Node{
Id: n.options.Id,
Address: n.options.Address,
}
pbNetConnect := &pbNet.Connect{
Node: node,
}
// only proceed with sending to NetworkChannel if marshal succeeds
if body, err := proto.Marshal(pbNetConnect); err == nil {
m := transport.Message{
Header: map[string]string{
"Micro-Method": "connect",
},
Body: body,
}
if err := netClient.Send(&m); err != nil {
log.Debugf("Network failed to send connect messsage: %v", err)
}
}
return nil
}
// Nodes returns a list of all network nodes
func (n *network) Nodes() []Node {
//track the visited nodes
visited := make(map[string]*node)
// queue of the nodes to visit
queue := list.New()
// push network node to the back of queue
queue.PushBack(n.node)
// mark the node as visited
visited[n.node.id] = n.node
// keep iterating over the queue until its empty
for qnode := queue.Front(); qnode != nil; qnode = qnode.Next() {
queue.Remove(qnode)
// iterate through all of its neighbours
// mark the visited nodes; enqueue the non-visted
for id, node := range qnode.Value.(*node).neighbours {
if _, ok := visited[id]; !ok {
visited[id] = node
queue.PushBack(node)
}
}
}
nodes := make([]Node, len(visited))
// collect all the nodes and return them
for _, node := range visited {
nodes = append(nodes, node)
}
return nodes
}
func (n *network) close() error {
// stop the server
if err := n.server.Stop(); err != nil {
return err
}
// stop the router
if err := n.Router.Stop(); err != nil {
return err
}
// close the tunnel
if err := n.Tunnel.Close(); err != nil {
return err
}
return nil
}
// Close closes network connection
func (n *network) Close() error {
n.Lock()
defer n.Unlock()
if !n.connected {
return nil
}
select {
case <-n.closed:
return nil
default:
// TODO: send close message to the network channel
close(n.closed)
// set connected to false
n.connected = false
}
// send close message only if we managed to connect to NetworkChannel
if netClient, ok := n.tunClient[NetworkChannel]; ok {
// send connect message to NetworkChannel
node := &pbNet.Node{
Id: n.options.Id,
Address: n.options.Address,
}
pbNetClose := &pbNet.Close{
Node: node,
}
// only proceed with sending to NetworkChannel if marshal succeeds
if body, err := proto.Marshal(pbNetClose); err == nil {
// create transport message and chuck it down the pipe
m := transport.Message{
Header: map[string]string{
"Micro-Method": "close",
},
Body: body,
}
if err := netClient.Send(&m); err != nil {
log.Debugf("Network failed to send close messsage: %v", err)
}
}
}
return n.close()
}
// Client returns network client
func (n *network) Client() client.Client {
return n.client
}
// Server returns network server
func (n *network) Server() server.Server {
return n.server
}