protoc-gen-go-micro/vendor/github.com/go-kit/kit/metrics/teststat/populate.go
2017-03-31 18:01:58 +02:00

73 lines
2.1 KiB
Go

package teststat
import (
"math"
"math/rand"
"github.com/go-kit/kit/metrics"
)
// PopulateNormalHistogram makes a series of normal random observations into the
// histogram. The number of observations is determined by Count. The randomness
// is determined by Mean, Stdev, and the seed parameter.
//
// This is a low-level function, exported only for metrics that don't perform
// dynamic quantile computation, like a Prometheus Histogram (c.f. Summary). In
// most cases, you don't need to use this function, and can use TestHistogram
// instead.
func PopulateNormalHistogram(h metrics.Histogram, seed int) {
r := rand.New(rand.NewSource(int64(seed)))
for i := 0; i < Count; i++ {
sample := r.NormFloat64()*float64(Stdev) + float64(Mean)
if sample < 0 {
sample = 0
}
h.Observe(sample)
}
}
func normalQuantiles() (p50, p90, p95, p99 float64) {
return nvq(50), nvq(90), nvq(95), nvq(99)
}
func nvq(quantile int) float64 {
// https://en.wikipedia.org/wiki/Normal_distribution#Quantile_function
return float64(Mean) + float64(Stdev)*math.Sqrt2*erfinv(2*(float64(quantile)/100)-1)
}
func erfinv(y float64) float64 {
// https://stackoverflow.com/questions/5971830/need-code-for-inverse-error-function
if y < -1.0 || y > 1.0 {
panic("invalid input")
}
var (
a = [4]float64{0.886226899, -1.645349621, 0.914624893, -0.140543331}
b = [4]float64{-2.118377725, 1.442710462, -0.329097515, 0.012229801}
c = [4]float64{-1.970840454, -1.624906493, 3.429567803, 1.641345311}
d = [2]float64{3.543889200, 1.637067800}
)
const y0 = 0.7
var x, z float64
if math.Abs(y) == 1.0 {
x = -y * math.Log(0.0)
} else if y < -y0 {
z = math.Sqrt(-math.Log((1.0 + y) / 2.0))
x = -(((c[3]*z+c[2])*z+c[1])*z + c[0]) / ((d[1]*z+d[0])*z + 1.0)
} else {
if y < y0 {
z = y * y
x = y * (((a[3]*z+a[2])*z+a[1])*z + a[0]) / ((((b[3]*z+b[3])*z+b[1])*z+b[0])*z + 1.0)
} else {
z = math.Sqrt(-math.Log((1.0 - y) / 2.0))
x = (((c[3]*z+c[2])*z+c[1])*z + c[0]) / ((d[1]*z+d[0])*z + 1.0)
}
x = x - (math.Erf(x)-y)/(2.0/math.SqrtPi*math.Exp(-x*x))
x = x - (math.Erf(x)-y)/(2.0/math.SqrtPi*math.Exp(-x*x))
}
return x
}