Moved to google.golang.org/genproto/googleapis/api/annotations
Fixes #52
This commit is contained in:
239
vendor/github.com/go-kit/kit/metrics/statsd/statsd.go
generated
vendored
Normal file
239
vendor/github.com/go-kit/kit/metrics/statsd/statsd.go
generated
vendored
Normal file
@@ -0,0 +1,239 @@
|
||||
// Package statsd provides a StatsD backend for package metrics. StatsD has no
|
||||
// concept of arbitrary key-value tagging, so label values are not supported,
|
||||
// and With is a no-op on all metrics.
|
||||
//
|
||||
// This package batches observations and emits them on some schedule to the
|
||||
// remote server. This is useful even if you connect to your StatsD server over
|
||||
// UDP. Emitting one network packet per observation can quickly overwhelm even
|
||||
// the fastest internal network.
|
||||
package statsd
|
||||
|
||||
import (
|
||||
"fmt"
|
||||
"io"
|
||||
"time"
|
||||
|
||||
"github.com/go-kit/kit/log"
|
||||
"github.com/go-kit/kit/metrics"
|
||||
"github.com/go-kit/kit/metrics/internal/lv"
|
||||
"github.com/go-kit/kit/metrics/internal/ratemap"
|
||||
"github.com/go-kit/kit/util/conn"
|
||||
)
|
||||
|
||||
// Statsd receives metrics observations and forwards them to a StatsD server.
|
||||
// Create a Statsd object, use it to create metrics, and pass those metrics as
|
||||
// dependencies to the components that will use them.
|
||||
//
|
||||
// All metrics are buffered until WriteTo is called. Counters and gauges are
|
||||
// aggregated into a single observation per timeseries per write. Timings are
|
||||
// buffered but not aggregated.
|
||||
//
|
||||
// To regularly report metrics to an io.Writer, use the WriteLoop helper method.
|
||||
// To send to a StatsD server, use the SendLoop helper method.
|
||||
type Statsd struct {
|
||||
prefix string
|
||||
rates *ratemap.RateMap
|
||||
|
||||
// The observations are collected in an N-dimensional vector space, even
|
||||
// though they only take advantage of a single dimension (name). This is an
|
||||
// implementation detail born purely from convenience. It would be more
|
||||
// accurate to collect them in a map[string][]float64, but we already have
|
||||
// this nice data structure and helper methods.
|
||||
counters *lv.Space
|
||||
gauges *lv.Space
|
||||
timings *lv.Space
|
||||
|
||||
logger log.Logger
|
||||
}
|
||||
|
||||
// New returns a Statsd object that may be used to create metrics. Prefix is
|
||||
// applied to all created metrics. Callers must ensure that regular calls to
|
||||
// WriteTo are performed, either manually or with one of the helper methods.
|
||||
func New(prefix string, logger log.Logger) *Statsd {
|
||||
return &Statsd{
|
||||
prefix: prefix,
|
||||
rates: ratemap.New(),
|
||||
counters: lv.NewSpace(),
|
||||
gauges: lv.NewSpace(),
|
||||
timings: lv.NewSpace(),
|
||||
logger: logger,
|
||||
}
|
||||
}
|
||||
|
||||
// NewCounter returns a counter, sending observations to this Statsd object.
|
||||
func (s *Statsd) NewCounter(name string, sampleRate float64) *Counter {
|
||||
s.rates.Set(s.prefix+name, sampleRate)
|
||||
return &Counter{
|
||||
name: s.prefix + name,
|
||||
obs: s.counters.Observe,
|
||||
}
|
||||
}
|
||||
|
||||
// NewGauge returns a gauge, sending observations to this Statsd object.
|
||||
func (s *Statsd) NewGauge(name string) *Gauge {
|
||||
return &Gauge{
|
||||
name: s.prefix + name,
|
||||
obs: s.gauges.Observe,
|
||||
add: s.gauges.Add,
|
||||
}
|
||||
}
|
||||
|
||||
// NewTiming returns a histogram whose observations are interpreted as
|
||||
// millisecond durations, and are forwarded to this Statsd object.
|
||||
func (s *Statsd) NewTiming(name string, sampleRate float64) *Timing {
|
||||
s.rates.Set(s.prefix+name, sampleRate)
|
||||
return &Timing{
|
||||
name: s.prefix + name,
|
||||
obs: s.timings.Observe,
|
||||
}
|
||||
}
|
||||
|
||||
// WriteLoop is a helper method that invokes WriteTo to the passed writer every
|
||||
// time the passed channel fires. This method blocks until the channel is
|
||||
// closed, so clients probably want to run it in its own goroutine. For typical
|
||||
// usage, create a time.Ticker and pass its C channel to this method.
|
||||
func (s *Statsd) WriteLoop(c <-chan time.Time, w io.Writer) {
|
||||
for range c {
|
||||
if _, err := s.WriteTo(w); err != nil {
|
||||
s.logger.Log("during", "WriteTo", "err", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// SendLoop is a helper method that wraps WriteLoop, passing a managed
|
||||
// connection to the network and address. Like WriteLoop, this method blocks
|
||||
// until the channel is closed, so clients probably want to start it in its own
|
||||
// goroutine. For typical usage, create a time.Ticker and pass its C channel to
|
||||
// this method.
|
||||
func (s *Statsd) SendLoop(c <-chan time.Time, network, address string) {
|
||||
s.WriteLoop(c, conn.NewDefaultManager(network, address, s.logger))
|
||||
}
|
||||
|
||||
// WriteTo flushes the buffered content of the metrics to the writer, in
|
||||
// StatsD format. WriteTo abides best-effort semantics, so observations are
|
||||
// lost if there is a problem with the write. Clients should be sure to call
|
||||
// WriteTo regularly, ideally through the WriteLoop or SendLoop helper methods.
|
||||
func (s *Statsd) WriteTo(w io.Writer) (count int64, err error) {
|
||||
var n int
|
||||
|
||||
s.counters.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
|
||||
n, err = fmt.Fprintf(w, "%s:%f|c%s\n", name, sum(values), sampling(s.rates.Get(name)))
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
count += int64(n)
|
||||
return true
|
||||
})
|
||||
if err != nil {
|
||||
return count, err
|
||||
}
|
||||
|
||||
s.gauges.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
|
||||
n, err = fmt.Fprintf(w, "%s:%f|g\n", name, last(values))
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
count += int64(n)
|
||||
return true
|
||||
})
|
||||
if err != nil {
|
||||
return count, err
|
||||
}
|
||||
|
||||
s.timings.Reset().Walk(func(name string, _ lv.LabelValues, values []float64) bool {
|
||||
sampleRate := s.rates.Get(name)
|
||||
for _, value := range values {
|
||||
n, err = fmt.Fprintf(w, "%s:%f|ms%s\n", name, value, sampling(sampleRate))
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
count += int64(n)
|
||||
}
|
||||
return true
|
||||
})
|
||||
if err != nil {
|
||||
return count, err
|
||||
}
|
||||
|
||||
return count, err
|
||||
}
|
||||
|
||||
func sum(a []float64) float64 {
|
||||
var v float64
|
||||
for _, f := range a {
|
||||
v += f
|
||||
}
|
||||
return v
|
||||
}
|
||||
|
||||
func last(a []float64) float64 {
|
||||
return a[len(a)-1]
|
||||
}
|
||||
|
||||
func sampling(r float64) string {
|
||||
var sv string
|
||||
if r < 1.0 {
|
||||
sv = fmt.Sprintf("|@%f", r)
|
||||
}
|
||||
return sv
|
||||
}
|
||||
|
||||
type observeFunc func(name string, lvs lv.LabelValues, value float64)
|
||||
|
||||
// Counter is a StatsD counter. Observations are forwarded to a Statsd object,
|
||||
// and aggregated (summed) per timeseries.
|
||||
type Counter struct {
|
||||
name string
|
||||
obs observeFunc
|
||||
}
|
||||
|
||||
// With is a no-op.
|
||||
func (c *Counter) With(...string) metrics.Counter {
|
||||
return c
|
||||
}
|
||||
|
||||
// Add implements metrics.Counter.
|
||||
func (c *Counter) Add(delta float64) {
|
||||
c.obs(c.name, lv.LabelValues{}, delta)
|
||||
}
|
||||
|
||||
// Gauge is a StatsD gauge. Observations are forwarded to a Statsd object, and
|
||||
// aggregated (the last observation selected) per timeseries.
|
||||
type Gauge struct {
|
||||
name string
|
||||
obs observeFunc
|
||||
add observeFunc
|
||||
}
|
||||
|
||||
// With is a no-op.
|
||||
func (g *Gauge) With(...string) metrics.Gauge {
|
||||
return g
|
||||
}
|
||||
|
||||
// Set implements metrics.Gauge.
|
||||
func (g *Gauge) Set(value float64) {
|
||||
g.obs(g.name, lv.LabelValues{}, value)
|
||||
}
|
||||
|
||||
// Add implements metrics.Gauge.
|
||||
func (g *Gauge) Add(delta float64) {
|
||||
g.add(g.name, lv.LabelValues{}, delta)
|
||||
}
|
||||
|
||||
// Timing is a StatsD timing, or metrics.Histogram. Observations are
|
||||
// forwarded to a Statsd object, and collected (but not aggregated) per
|
||||
// timeseries.
|
||||
type Timing struct {
|
||||
name string
|
||||
obs observeFunc
|
||||
}
|
||||
|
||||
// With is a no-op.
|
||||
func (t *Timing) With(...string) metrics.Histogram {
|
||||
return t
|
||||
}
|
||||
|
||||
// Observe implements metrics.Histogram. Value is interpreted as milliseconds.
|
||||
func (t *Timing) Observe(value float64) {
|
||||
t.obs(t.name, lv.LabelValues{}, value)
|
||||
}
|
66
vendor/github.com/go-kit/kit/metrics/statsd/statsd_test.go
generated
vendored
Normal file
66
vendor/github.com/go-kit/kit/metrics/statsd/statsd_test.go
generated
vendored
Normal file
@@ -0,0 +1,66 @@
|
||||
package statsd
|
||||
|
||||
import (
|
||||
"testing"
|
||||
|
||||
"github.com/go-kit/kit/log"
|
||||
"github.com/go-kit/kit/metrics/teststat"
|
||||
)
|
||||
|
||||
func TestCounter(t *testing.T) {
|
||||
prefix, name := "abc.", "def"
|
||||
label, value := "label", "value" // ignored
|
||||
regex := `^` + prefix + name + `:([0-9\.]+)\|c$`
|
||||
s := New(prefix, log.NewNopLogger())
|
||||
counter := s.NewCounter(name, 1.0).With(label, value)
|
||||
valuef := teststat.SumLines(s, regex)
|
||||
if err := teststat.TestCounter(counter, valuef); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestCounterSampled(t *testing.T) {
|
||||
// This will involve multiplying the observed sum by the inverse of the
|
||||
// sample rate and checking against the expected value within some
|
||||
// tolerance.
|
||||
t.Skip("TODO")
|
||||
}
|
||||
|
||||
func TestGauge(t *testing.T) {
|
||||
prefix, name := "ghi.", "jkl"
|
||||
label, value := "xyz", "abc" // ignored
|
||||
regex := `^` + prefix + name + `:([0-9\.]+)\|g$`
|
||||
s := New(prefix, log.NewNopLogger())
|
||||
gauge := s.NewGauge(name).With(label, value)
|
||||
valuef := teststat.LastLine(s, regex)
|
||||
if err := teststat.TestGauge(gauge, valuef); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
// StatsD timings just emit all observations. So, we collect them into a generic
|
||||
// histogram, and run the statistics test on that.
|
||||
|
||||
func TestTiming(t *testing.T) {
|
||||
prefix, name := "statsd.", "timing_test"
|
||||
label, value := "abc", "def" // ignored
|
||||
regex := `^` + prefix + name + `:([0-9\.]+)\|ms$`
|
||||
s := New(prefix, log.NewNopLogger())
|
||||
timing := s.NewTiming(name, 1.0).With(label, value)
|
||||
quantiles := teststat.Quantiles(s, regex, 50) // no |@0.X
|
||||
if err := teststat.TestHistogram(timing, quantiles, 0.01); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
||||
|
||||
func TestTimingSampled(t *testing.T) {
|
||||
prefix, name := "statsd.", "sampled_timing_test"
|
||||
label, value := "foo", "bar" // ignored
|
||||
regex := `^` + prefix + name + `:([0-9\.]+)\|ms\|@0\.01[0]*$`
|
||||
s := New(prefix, log.NewNopLogger())
|
||||
timing := s.NewTiming(name, 0.01).With(label, value)
|
||||
quantiles := teststat.Quantiles(s, regex, 50)
|
||||
if err := teststat.TestHistogram(timing, quantiles, 0.02); err != nil {
|
||||
t.Fatal(err)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user