2017-03-31 18:01:58 +02:00

130 lines
2.3 KiB
Go

package sprig
import (
"math"
"reflect"
"strconv"
)
// toFloat64 converts 64-bit floats
func toFloat64(v interface{}) float64 {
if str, ok := v.(string); ok {
iv, err := strconv.ParseFloat(str, 64)
if err != nil {
return 0
}
return iv
}
val := reflect.Indirect(reflect.ValueOf(v))
switch val.Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return float64(val.Int())
case reflect.Uint8, reflect.Uint16, reflect.Uint32:
return float64(val.Uint())
case reflect.Uint, reflect.Uint64:
return float64(val.Uint())
case reflect.Float32, reflect.Float64:
return val.Float()
case reflect.Bool:
if val.Bool() == true {
return 1
}
return 0
default:
return 0
}
}
func toInt(v interface{}) int {
//It's not optimal. Bud I don't want duplicate toInt64 code.
return int(toInt64(v))
}
// toInt64 converts integer types to 64-bit integers
func toInt64(v interface{}) int64 {
if str, ok := v.(string); ok {
iv, err := strconv.ParseInt(str, 10, 64)
if err != nil {
return 0
}
return iv
}
val := reflect.Indirect(reflect.ValueOf(v))
switch val.Kind() {
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
return val.Int()
case reflect.Uint8, reflect.Uint16, reflect.Uint32:
return int64(val.Uint())
case reflect.Uint, reflect.Uint64:
tv := val.Uint()
if tv <= math.MaxInt64 {
return int64(tv)
}
// TODO: What is the sensible thing to do here?
return math.MaxInt64
case reflect.Float32, reflect.Float64:
return int64(val.Float())
case reflect.Bool:
if val.Bool() == true {
return 1
}
return 0
default:
return 0
}
}
func max(a interface{}, i ...interface{}) int64 {
aa := toInt64(a)
for _, b := range i {
bb := toInt64(b)
if bb > aa {
aa = bb
}
}
return aa
}
func min(a interface{}, i ...interface{}) int64 {
aa := toInt64(a)
for _, b := range i {
bb := toInt64(b)
if bb < aa {
aa = bb
}
}
return aa
}
func until(count int) []int {
step := 1
if count < 0 {
step = -1
}
return untilStep(0, count, step)
}
func untilStep(start, stop, step int) []int {
v := []int{}
if stop < start {
if step >= 0 {
return v
}
for i := start; i > stop; i += step {
v = append(v, i)
}
return v
}
if step <= 0 {
return v
}
for i := start; i < stop; i += step {
v = append(v, i)
}
return v
}