Some functioning network code

This commit is contained in:
Asim Aslam 2019-07-02 20:54:21 +01:00
parent c3611aead2
commit f619e46def
5 changed files with 487 additions and 304 deletions

View File

@ -44,15 +44,17 @@ type network struct {
// lease generates a new lease with a node id/address
// TODO: use a consensus mechanism, pool or some deterministic
// unique prefixing method.
// unique addressing method.
func (n *network) lease() *pb.Lease {
// create the id
id := uuid.New().String()
// create a timestamp
now := time.Now().UnixNano()
// create the address
// create the address by hashing the id and timestamp
h := sha256.New()
h.Write([]byte(fmt.Sprintf("%s-%d\n", id, now)))
// magic new address
address := fmt.Sprintf("%x", h.Sum(nil))
// return the node
@ -62,6 +64,7 @@ func (n *network) lease() *pb.Lease {
Node: &pb.Node{
Id: id,
Address: address,
Network: n.id,
},
}
}
@ -104,7 +107,10 @@ func (n *network) Connect() (Node, error) {
return newNode(n)
}
// TODO: establish links for peering networks
// Peer is used to establish a link between two networks.
// e.g micro.mu connects to example.com and share routes
// This is done by creating a new node on both networks
// and creating a link between them.
func (n *network) Peer(Network) (Link, error) {
// New network was created using NewNetwork after receiving routes from a different node
@ -125,9 +131,13 @@ func (n *network) Peer(Network) (Link, error) {
func newNetwork(opts ...options.Option) *network {
options := options.NewOptions(opts...)
// new network instance
// new network instance with defaults
net := &network{
id: DefaultId,
Options: options,
id: DefaultId,
router: router.DefaultRouter,
proxy: new(mucp.Proxy),
resolver: new(nreg.Resolver),
}
// get network id
@ -140,24 +150,18 @@ func newNetwork(opts ...options.Option) *network {
r, ok := options.Values().Get("network.router")
if ok {
net.router = r.(router.Router)
} else {
net.router = router.DefaultRouter
}
// get proxy
p, ok := options.Values().Get("network.proxy")
if ok {
net.proxy = p.(proxy.Proxy)
} else {
net.proxy = new(mucp.Proxy)
}
// get resolver
res, ok := options.Values().Get("network.resolver")
if ok {
net.resolver = res.(resolver.Resolver)
} else {
net.resolver = new(nreg.Resolver)
}
return net

View File

@ -1,30 +1,38 @@
package network
import (
"errors"
"fmt"
"io"
"sync"
gproto "github.com/golang/protobuf/proto"
"github.com/micro/go-micro/codec"
pb "github.com/micro/go-micro/network/proto"
"github.com/micro/go-micro/transport"
)
type link struct {
// the embedded node
*node
sync.RWMutex
// the link id
id string
// queue buffer for this link
// the send queue to the socket
queue chan *Message
// codec we use to marshal things
codec codec.Marshaler
// the socket for this link
socket *socket
socket transport.Socket
// the lease for this link
lease *pb.Lease
// length and weight of the link
mtx sync.RWMutex
// determines the cost of the link
// based on queue length and roundtrip
length int
@ -33,25 +41,252 @@ type link struct {
// link methods
// bring up the link
func (l *link) up() error {
// TODO: manage the length/weight of the link
return l.socket.accept()
// process processe messages on the send queue
func (l *link) process() {
for {
select {
case m := <-l.queue:
if err := l.send(m, nil); err != nil {
return
}
}
}
}
// kill the link
func (l *link) down() error {
return l.socket.close()
// accept waits for the connect message from the remote end
// if it receives anything else it throws an error
func (l *link) accept() error {
for {
m := new(transport.Message)
err := l.socket.Recv(m)
if err == io.EOF {
return nil
}
if err != nil {
return err
}
// TODO: pick a reliable header
event := m.Header["Micro-Method"]
switch event {
// connect event
case "Connect":
// process connect events from network.Connect()
// these are new connections to join the network
// decode the connection event
conn := new(pb.Connect)
if err := l.codec.Unmarshal(m.Body, conn); err != nil {
// skip error
continue
}
// get the existing lease if it exists
lease := conn.Lease
// if there's no lease create a new one
if lease == nil {
// create a new lease/node
lease = l.node.network.lease()
}
// send back a lease offer for the node
if err := l.send(&Message{
Header: map[string]string{
"Micro-Method": "Lease",
},
}, lease); err != nil {
return err
}
// the lease is saved
l.Lock()
l.lease = lease
l.Unlock()
// we've connected
// start processing the messages
go l.process()
return nil
case "Close":
l.Close()
return errors.New("connection closed")
default:
return errors.New("unknown method: " + event)
}
}
}
// connect sends a connect request and waits on a lease.
// this is for a new connection. in the event we send
// an existing lease, the same lease should be returned.
// if it differs then we assume our address for this link
// is different...
func (l *link) connect() error {
// get the current lease
l.RLock()
lease := l.lease
l.RUnlock()
// send a lease request
if err := l.send(&Message{
Header: map[string]string{
"Micro-Method": "Connect",
},
}, &pb.Connect{Lease: lease}); err != nil {
return err
}
// create the new things
tm := new(Message)
newLease := new(pb.Lease)
// wait for a response, hopefully a lease
if err := l.recv(tm, newLease); err != nil {
return err
}
event := tm.Header["Micro-Method"]
// check the method
switch event {
case "Lease":
// save the lease
l.Lock()
l.lease = newLease
l.Unlock()
// start processing the messages
go l.process()
case "Close":
l.socket.Close()
return errors.New("connection closed")
default:
return errors.New("unable to attain lease")
}
return nil
}
// send a message over the link
func (l *link) send(m *Message, v interface{}) error {
tm := new(transport.Message)
tm.Header = m.Header
tm.Body = m.Body
// set the body if not nil
// we're assuming this is network message
if v != nil {
// encode the data
b, err := l.codec.Marshal(v)
if err != nil {
return err
}
// set the content type
tm.Header["Content-Type"] = "application/protobuf"
// set the marshalled body
tm.Body = b
}
fmt.Printf("link %s sending %+v %+v\n", l.id, m, v)
// send via the transport socket
return l.socket.Send(&transport.Message{
Header: m.Header,
Body: m.Body,
})
}
// recv a message on the link
func (l *link) recv(m *Message, v interface{}) error {
if m.Header == nil {
m.Header = make(map[string]string)
}
tm := new(transport.Message)
// receive the transport message
if err := l.socket.Recv(tm); err != nil {
return err
}
fmt.Printf("link %s receiving %+v %+v\n", l.id, tm, v)
// set the message
m.Header = tm.Header
m.Body = tm.Body
// bail early
if v == nil {
return nil
}
// try unmarshal the body
// skip if there's no content-type
if tm.Header["Content-Type"] != "application/protobuf" {
return nil
}
// return unmarshalled
return l.codec.Unmarshal(m.Body, v.(gproto.Message))
}
// Close the link
func (l *link) Close() error {
// send a final close message
l.socket.Send(&transport.Message{
Header: map[string]string{
"Micro-Method": "Close",
},
})
// close the socket
return l.socket.Close()
}
// returns the node id
func (l *link) Id() string {
l.RLock()
defer l.RUnlock()
if l.lease == nil {
return ""
}
return l.lease.Node.Id
}
// Address of the node we're connected to
func (l *link) Address() string {
l.RLock()
defer l.RUnlock()
if l.lease == nil {
return l.socket.Remote()
}
// the node in the lease
return l.lease.Node.Address
}
func (l *link) Length() int {
l.mtx.RLock()
defer l.mtx.RUnlock()
l.RLock()
defer l.RUnlock()
return l.length
}
func (l *link) Weight() int {
l.mtx.RLock()
defer l.mtx.RUnlock()
l.RLock()
defer l.RUnlock()
return l.weight
}
func (l *link) Accept() (*Message, error) {
m := new(Message)
err := l.recv(m, nil)
if err != nil {
return nil, err
}
return m, nil
}
func (l *link) Send(m *Message) error {
return l.send(m, nil)
}

View File

@ -1,7 +1,11 @@
package network
import (
"errors"
"fmt"
"net"
"runtime/debug"
"strconv"
"sync"
"time"
@ -9,6 +13,7 @@ import (
"github.com/micro/go-micro/codec/proto"
"github.com/micro/go-micro/registry"
"github.com/micro/go-micro/transport"
"github.com/micro/go-micro/util/addr"
"github.com/micro/go-micro/util/log"
pb "github.com/micro/go-micro/network/proto"
@ -20,7 +25,7 @@ type node struct {
// closed channel
closed chan bool
mtx sync.RWMutex
sync.RWMutex
// the node id
id string
@ -40,32 +45,46 @@ type node struct {
// leases for connections to us
// link id:link
links map[string]*link
// messages received over links
recv chan *Message
// messages received over links
send chan *Message
}
// network methods
func newNode(n *network) (*node, error) {
// create a new node
node := new(node)
// closed channel
node.closed = make(chan bool)
// set the nodes network
node.network = n
// initially we have no id
// create an id and address
// TODO: create a real unique id and address
// lease := n.lease()
// set the node id
// node.id = lease.Node.Id
node := &node{
// the links
links: make(map[string]*link),
// closed channel
closed: make(chan bool),
// set the nodes network
network: n,
// set the default transport
transport: transport.DefaultTransport,
// set the default registry
registry: registry.DefaultRegistry,
// receive channel for accepted connections
recv: make(chan *Message, 128),
// send channel for accepted connections
send: make(chan *Message, 128),
}
// get the transport we're going to use for our tunnels
// TODO: set to quic or tunnel or something else
t, ok := n.Options.Values().Get("network.transport")
if ok {
node.transport = t.(transport.Transport)
} else {
// TODO: set to quic
node.transport = transport.DefaultTransport
}
// register the node with the registry for the network
// TODO: use a registrar or something else for local things
r, ok := n.Options.Values().Get("network.registry")
if ok {
node.registry = r.(registry.Registry)
}
// we listen on a random address, this is not advertised
@ -77,8 +96,6 @@ func newNode(n *network) (*node, error) {
// set the listener
node.listener = l
// TODO: this should be an overlay address
// ideally received via some dhcp style broadcast
node.address = l.Addr()
// TODO: start the router and broadcast advertisements
@ -90,36 +107,51 @@ func newNode(n *network) (*node, error) {
// process any incoming messages on the listener
// this is our inbound network connection
node.accept(l)
go node.accept(l)
// register the node with the registry for the network
// TODO: use a registrar or something else for local things
r, ok := n.Options.Values().Get("network.registry")
if ok {
node.registry = r.(registry.Registry)
} else {
node.registry = registry.DefaultRegistry
}
// process any messages being sent by node.Send
// forwards to every link we have
go node.process()
// lookup the network to see if there's any nodes
records := n.lookup(node.registry)
// should we actually do this?
// assuming if there are no records, we are the first
// we set ourselves a lease. should we actually do this?
if len(records) == 0 {
// set your own node id
lease := n.lease()
node.id = lease.Node.Id
}
// register self with the network registry
var port int
// TODO: this should be an overlay address
// ideally received via some dhcp style broadcast
host, pp, err := net.SplitHostPort(l.Addr())
if err == nil {
pt, _ := strconv.Atoi(pp)
port = pt
}
// some horrible things are happening
if host == "::" {
host = ""
}
// set the address
addr, _ := addr.Extract(host)
node.address = fmt.Sprintf("%s:%d", addr, port)
// register self with the registry using network: prefix
// this is a local registry of nodes separate to the resolver
// maybe consolidate registry/resolver
// TODO: find a way to do this via gossip or something else
// TODO: find a way to do this via gossip or something like
// a registrar or tld or whatever
if err := node.registry.Register(&registry.Service{
// register with the network id
Name: "network:" + n.Id(),
Nodes: []*registry.Node{
{Id: node.id, Address: node.address},
{Id: node.id, Address: addr, Port: port},
},
}); err != nil {
node.Close()
@ -134,7 +166,20 @@ func newNode(n *network) (*node, error) {
// wait forever to connect
// TODO: do something with the links we receive
<-linkChan
link := <-linkChan
// process this link
go node.manage(link)
go func() {
// process any further new links
select {
case l := <-linkChan:
go node.manage(l)
case <-node.closed:
return
}
}()
return node, nil
}
@ -158,28 +203,82 @@ func (n *node) accept(l transport.Listener) error {
}()
// create a new link
// generate a new link
link := &link{
// link has a unique id
id: uuid.New().String(),
// proto marshaler
codec: proto.Marshaler{},
// link has a socket
socket: sock,
// for generating leases,
node: n,
id: uuid.New().String(),
// the send queue,
queue: make(chan *Message, 128),
}
// create a new network socket
sk := new(socket)
sk.node = n
sk.codec = proto.Marshaler{}
sk.socket = sock
// set link socket
link.socket = sk
log.Debugf("Accepting connection from %s", link.socket.Remote())
// accept messages on the socket
// blocks forever or until error
if err := link.up(); err != nil {
// TODO: delete link
// wait for the link to be connected
// the remote end will send "Connect"
// and we will return a "Lease"
if err := link.accept(); err != nil {
return
}
log.Debugf("Accepted link from %s", link.socket.Remote())
// save with the remote address as the key
// where we attempt to connect to nodes
// we do not connect to the same thing
n.Lock()
n.links[link.socket.Remote()] = link
n.Unlock()
// manage the link for its lifetime
n.manage(link)
})
}
// processes the send queue
func (n *node) process() {
for {
select {
case <-n.closed:
return
// process outbound messages on the send queue
// these messages are received from n.Send
case m := <-n.send:
// queue the message on each link
// TODO: more than likely use proxy
n.RLock()
for _, l := range n.links {
l.queue <- m
}
n.RUnlock()
}
}
}
func (n *node) manage(l *link) {
// now process inbound messages on the link
// assumption is this handles everything else
for {
// get a message on the link
m := new(Message)
if err := l.recv(m, nil); err != nil {
// ???
return
}
select {
case <-n.closed:
return
// send to the recv channel e.g node.Accept()
case n.recv <- m:
}
}
}
// connect attempts to periodically connect to new nodes in the network.
// It will only do this if it has less than 3 connections. this method
// is called by network.Connect and fired in a go routine after establishing
@ -188,30 +287,37 @@ func (n *node) accept(l transport.Listener) error {
func (n *node) connect(linkChan chan *link) {
// TODO: adjustable ticker
t := time.NewTicker(time.Second)
var lease *pb.Lease
for {
select {
// exit when told to do so
case <-n.closed:
return
// on every tick check the number of links and then attempt
// to connect to new nodes if we don't have sufficient links
case <-t.C:
n.mtx.RLock()
n.RLock()
// only start processing if we have less than 3 links
if len(n.links) > 2 {
n.mtx.RUnlock()
n.RUnlock()
continue
}
// get a list of link addresses so we don't reconnect
// to the ones we're already connected to
nodes := map[string]bool{}
for _, l := range n.links {
nodes[l.lease.Node.Address] = true
for addr, _ := range n.links {
// id is the lookup address used to connect
nodes[addr] = true
}
n.mtx.RUnlock()
// unlock our read lock
n.RUnlock()
// lookup records for our network
records := n.network.lookup(n.registry)
// for each record check we haven't already got a connection
@ -224,53 +330,53 @@ func (n *node) connect(linkChan chan *link) {
for _, record := range records {
// skip existing connections
if nodes[record.Address] {
log.Debugf("Skipping connection to %s", record.Address)
continue
}
// attempt to connect and create a link
log.Debugf("Dialing connection to %s", record.Address)
// connect to the node
s, err := n.transport.Dial(record.Address)
sock, err := n.transport.Dial(record.Address)
if err != nil {
log.Debugf("Dialing connection error %v", err)
continue
}
// create a new socket
sk := &socket{
node: n,
codec: &proto.Marshaler{},
socket: s,
}
// broadcast a "connect" request and get back "lease"
// this is your tunnel to the outside world and to the network
// then push updates and messages over this link
// first connect will not have a lease so we get one with node id/address
l, err := sk.connect(lease)
if err != nil {
s.Close()
continue
}
// set lease for next time
lease = l
// create a new link with the lease and socket
link := &link{
codec: &proto.Marshaler{},
id: uuid.New().String(),
lease: lease,
node: n,
socket: sock,
queue: make(chan *Message, 128),
socket: sk,
}
// bring up the link
go link.up()
log.Debugf("Connecting link to %s", record.Address)
// connect the link:
// this broadcasts a "connect" request and gets back a "lease"
// this is the tunnel to the outside world and to the network
// then push updates and messages over this link
// first connect will not have a lease so we get one with node id/address
if err := link.connect(); err != nil {
// shit
link.Close()
continue
}
log.Debugf("Connected link to %s", record.Address)
n.Lock()
// set lease for next time we connect to anything else
// we want to use the same lease for that. in future
// we may have to expire the lease
lease = link.lease
// save the new link
n.mtx.Lock()
n.links[link.id] = link
n.mtx.Unlock()
n.links[link.socket.Remote()] = link
n.Unlock()
// drop this down the link channel to the network
// so it can manage the links
@ -280,8 +386,6 @@ func (n *node) connect(linkChan chan *link) {
default:
}
}
case <-n.closed:
return
}
}
}
@ -296,14 +400,17 @@ func (n *node) Close() error {
case <-n.closed:
return nil
default:
// mark as closed
close(n.closed)
// shutdown all the links
n.mtx.Lock()
n.Lock()
for id, link := range n.links {
link.down()
link.Close()
delete(n.links, id)
}
n.mtx.Unlock()
n.Unlock()
// deregister self
n.registry.Deregister(&registry.Service{
Name: "network:" + n.network.Id(),
@ -311,14 +418,29 @@ func (n *node) Close() error {
{Id: n.id, Address: n.address},
},
})
// shutdown the listener
return n.listener.Close()
}
return nil
}
// Accept receives the incoming messages from all links
func (n *node) Accept() (*Message, error) {
// process the inbound cruft
for {
select {
case m, ok := <-n.recv:
if !ok {
return nil, errors.New("connection closed")
}
// return the message
return m, nil
case <-n.closed:
return nil, errors.New("connection closed")
}
}
// we never get here
return nil, nil
}
@ -326,22 +448,13 @@ func (n *node) Network() string {
return n.network.id
}
// Send propagates a message over all links. This should probably use its proxy.
func (n *node) Send(m *Message) error {
n.mtx.RLock()
defer n.mtx.RUnlock()
var gerr error
// send to all links
// TODO: be smarter
for _, link := range n.links {
// TODO: process the error, do some link flap detection
// blackhole the connection, etc
if err := link.socket.send(m, nil); err != nil {
gerr = err
continue
}
select {
case <-n.closed:
return errors.New("connection closed")
case n.send <- m:
// send the message
}
return gerr
return nil
}

View File

@ -2,6 +2,8 @@
package registry
import (
"fmt"
"github.com/micro/go-micro/network/resolver"
"github.com/micro/go-micro/registry"
)
@ -27,8 +29,13 @@ func (r *Resolver) Resolve(id string) ([]*resolver.Record, error) {
for _, service := range services {
for _, node := range service.Nodes {
addr := node.Address
// such a hack
if node.Port > 0 {
addr = fmt.Sprintf("%s:%d", node.Address, node.Port)
}
records = append(records, &resolver.Record{
Address: node.Address,
Address: addr,
})
}
}

View File

@ -1,176 +0,0 @@
package network
import (
"io"
gproto "github.com/golang/protobuf/proto"
"github.com/google/uuid"
"github.com/micro/go-micro/codec"
"github.com/micro/go-micro/transport"
pb "github.com/micro/go-micro/network/proto"
)
type socket struct {
node *node
codec codec.Marshaler
socket transport.Socket
}
func (s *socket) close() error {
return s.socket.Close()
}
// accept is the state machine that processes messages on the socket
func (s *socket) accept() error {
for {
m := new(transport.Message)
err := s.socket.Recv(m)
if err == io.EOF {
return nil
}
if err != nil {
return err
}
// TODO: pick a reliable header
event := m.Header["Micro-Method"]
switch event {
// connect event
case "connect":
// process connect events from network.Connect()
// these are new connections to join the network
// decode the connection event
conn := new(pb.Connect)
if err := s.codec.Unmarshal(m.Body, conn); err != nil {
// skip error
continue
}
// get the existing lease if it exists
lease := conn.Lease
if lease == nil {
// create a new lease/node
lease = s.node.network.lease()
}
// send back a lease offer for the node
if err := s.send(&Message{
Header: map[string]string{
"Micro-Method": "lease",
},
}, lease); err != nil {
return err
}
// record this mapping of socket to node/lease
s.node.mtx.Lock()
id := uuid.New().String()
s.node.links[id] = &link{
node: s.node,
id: id,
lease: lease,
queue: make(chan *Message, 128),
socket: s,
}
s.node.mtx.Unlock()
// a route update
case "route":
// process router events
// received a lease
case "lease":
// no op as we don't process lease events on existing connections
// these are in response to a connect message
default:
// process all other messages
}
}
}
// connect sends a connect request and waits on a lease.
// this is for a new connection. in the event we send
// an existing lease, the same lease should be returned.
// if it differs then we assume our address for this link
// is different...
func (s *socket) connect(l *pb.Lease) (*pb.Lease, error) {
// send a lease request
if err := s.send(&Message{
Header: map[string]string{
"Micro-Method": "connect",
},
}, &pb.Connect{Lease: l}); err != nil {
return nil, err
}
// create the new things
tm := new(Message)
lease := new(pb.Lease)
// wait for a lease response
if err := s.recv(tm, lease); err != nil {
return nil, err
}
return lease, nil
}
func (s *socket) send(m *Message, v interface{}) error {
tm := new(transport.Message)
tm.Header = m.Header
tm.Body = m.Body
// set the body if not nil
// we're assuming this is network message
if v != nil {
// encode the data
b, err := s.codec.Marshal(v)
if err != nil {
return err
}
// set the content type
tm.Header["Content-Type"] = "application/protobuf"
// set the marshalled body
tm.Body = b
}
// send via the transport socket
return s.socket.Send(&transport.Message{
Header: m.Header,
Body: m.Body,
})
}
func (s *socket) recv(m *Message, v interface{}) error {
if m.Header == nil {
m.Header = make(map[string]string)
}
tm := new(transport.Message)
// receive the transport message
if err := s.socket.Recv(tm); err != nil {
return err
}
// set the message
m.Header = tm.Header
m.Body = tm.Body
// bail early
if v == nil {
return nil
}
// try unmarshal the body
// skip if there's no content-type
if tm.Header["Content-Type"] != "application/protobuf" {
return nil
}
// return unmarshalled
return s.codec.Unmarshal(m.Body, v.(gproto.Message))
}